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Abstract  

For taking most advantage of real-time sensor data, data has to be processed by a single or even by a chain of models. 

Digital Twins (DTs) provide software platforms to perform the processing also in real-time in contrast to earlier simula-

tion studies. The step from IoT to a full exploitation of DTs solutions entails new challenges, such as the transformation 

of models into an updateable format, but also new features, such as the easier and flexible linking of different models 

through a streaming platform. We discuss this key challenges and features based on our example application for remote 

monitoring of ocean fruit transportation.  

 

1 Scope and motivation 

Digital twins (DT) have gained much attention in the recent 

years, both in industry and research community. According 

to [1], a DT is a replica of a physical object, representing 

its properties as close as possible, but now in the digital 

world, and preferably in real-time. The digital replica ena-

bles to predict the future behavior of the real object, or to 

test possible intervention before applying them in the real 

world.  

Most DT applications are currently found in logistics, man-

ufacturing, and operational research. Sensors play only a 

limited role in such applications. The connection from the 

real to the digital world is mostly implemented by RFID 

readers. Information consists of discrete values, e.g., the 

object ID number, or it can be reduced to a two-stage out-

put, giving whether the object has arrived at the expected 

location or not. 

However, in general, sensors are giving continuous output 

signals, such as temperature, humidity, or concentration of 

a chemical substance. In this article, we ask and review 

how such continuous sensor output can be integrated into 

DT. 

Continuous sensors require mathematical processing, 

mostly far beyond simple threshold checking, including 

prediction of future values, filling gaps due to reduced set 

of sensors, and estimation of product life cycle or quality 

data. For example, when the core temperature of an object 

is not possible to measure directly, this gap can be filled by 

deducing it from the surface temperature, where the sensor 

is easier to install. Deviations from recommended opera-

tion and storage conditions cause a certain amount of stress 

to the object, such as wearing of a mechanical object or 

quality loss of a food product, leading to another class of 

models.  

These models must be updated after each new measure-

ment. This real-time feature of DTs is often stressed in lit-

erature, but practical recommendations how models can be 

made updatable for processing real-time or live sensor data 

is almost missing [2]. In this article, we consider this ques-

tion in detail. 

The paper is organized around an example from our own 

research. Since more than 10 years, we have worked on the 

remote monitoring of refrigerated ocean containers with 

food products. Five field tests were carried out with our In-

telligent Container (IC) for the transport of bananas from 

Central America to Europe. The last three field tests also 

included artificial ripening inside the container [3]. During 

these tests, we already evaluated required IoT technologies 

for DTs such as wireless sensors, communication gate-

ways, and data transfer via Wi-Fi, satellite, and cellular net-

works.  

In cooperation with experts from agricultural science, we 

developed various models to predict biological and thermal 

processes inside the container. The green-life model pre-

dicts the expected timespan until an unwanted ripening 

process commences and the bananas can no longer be used 

commercially. A second model estimates a factor to de-

scribe the thermal coupling between circulating cooling air 

and a banana box. A third model estimates the current heat 

production by biological processes as indicator for the pro-

gress of ripening.  

In summary, Sensors and IoT technologies are available, as 

well as prediction and analysis models, and now, the trans-

formation into a DT seems to be the next logical step, lead-

ing us to the question: 

 

What are the essential new features, challenges, and con-

cepts of DTs, helping us to include live sensor data in pro-

cess models? 
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2 Definitions and related projects 

Modelling the relation between temperature deviations and 

resulting quality changes in agricultural products has a long 

tradition in biological research. A common scale to de-

scribe the fruit quality is the shelf-life, giving the remain-

ing number of days until the quality falls below an ac-

ceptance threshold and the product must be disposed. A list 

with model parameters for 60 different fruits and vegeta-

bles can be found in [4]. Online tools to calculate the shelf-

life for 6 products were provided by the FRISBEE project 

[5]. Some temperature data loggers provide an integrated 

shelf-life model. The Verigo Bluetooth logger warns by a 

LED on predicted quality problems [6]. 

These solutions are limited to manual data transfer to the 

mathematical simulation, or to the online platform. In other 

data logger based solutions, data exchange is only possible 

at certain checkpoints via Bluetooth or RFID readers.  

IoT solutions, such as the remote container monitoring sys-

tem by Maersk [7], focus on the machinery state of the 

cooling unit and container location and less on the product 

temperature in the cargo hold, and therefore lack a detailed 

analysis of product temperature data.  

Recent research combines computational fluid dynamics 

(CFD) modelling for the influence of packing and airflow 

with biological models [8] but is also limited to simulation. 

However, the importance to link models with individual 

sensor data was emphasized by the same group of authors 

[1]: “each shipment is subject to a unique and unpredicta-

ble set of temperature and gas atmosphere conditions”. 

The prevalence of simulation models led [9] to the ques-

tion: “Is it a DT or just a model?” 

Instead of excluding some applications from being a DT, 

Uhlenkamp et al. [10] suggested a taxonomy to evaluate 

and compare different DT applications, saying that: “each 

DT is legitimate in its corresponding context, which makes 

an overarching definition of DT more abstract and thus dif-

ficult to comprehend and to imagine”. 

Their taxonomy includes seven dimensions or scales. We 

highlight only two dimensions, which have the most rele-

vance for the question of sensor integration. The first one 

is the data integration level: Basic digital twins offer only 

offline simulation with manually feeding recorded data 

into models. More advanced solutions offer automated data 

transfer from the real object to the twin. The most advanced 

stage is achieved by two-way communication to send back 

information or control commands to the real object. 

 

The ‘Goal Type’ of the DT application is the second scale 

with high relevance for sensor integration: 

 

 Basic twins only acquire and display sensor infor-

mation about the object by using IoT technologies.  

 Second stage is information analysis by evaluating in-

ternal properties of the objects and prediction of the 

future behavior of the object.   

 In virtual experiments, as third stage, the outcome of 

corrective actions can be tested in simulation of the 

DT platform before applying the intervention on the 

real object. A what-if scenario, for example, can test 

the effect of different temperature setpoint values on 

the temperature and product quality at the end of the 

transport.  

 The fourth stage can be implemented by an automated 

system for testing different possible interventions and 

selecting the most beneficial one. The feedback loop 

is closed by sending a control command back to the 

real object to trigger the corrective action.  

 

The above-mentioned biological applications have mostly 

a low data integration level. This is not only due to lacking 

communication technology but also to lack of knowledge 

on how a complex simulation model can be converted into 

an updatable format for integration of live sensor data. In 

the next section, we will focus on this question. 

3 Hidden states and integral models 

In general, a physical object, such as a box of fruits inside 

the container, has more quantities of interest than the num-

ber of actual measurable properties. The first ones are the 

system states x(t), and the latter ones the system outputs 

y(t). Additional known control inputs, such as the setpoint 

temperature, are denoted as u(t). 

In our reefer container example, it might only be possible 

to install a sensor at the box surface. The current surface 

temperature is the first type of system state, which can be 

measured directly, although sensor noise must be consid-

ered.  

The box core temperature is the first ‘hidden’ state, which 

cannot be directly measured but deduced from the meas-

urements by adequate modelling. Bananas can produce tre-

mendous amounts of heat by converting starch to sugar. 

The current biological activity or heat production can be 

considered a second ‘hidden’ state, although it requires 

more advanced filtering for estimation.  

Other system states might be completely non-observable, 

for example the concentration of an enzyme contributing 

to quality loss, but without causing temperature changes.  

The first question when planning sensor integration into a 

DT should be to ask, which states are directly measurable, 

hidden, or non-observable [11].  

In some cases, the estimation of a hidden state can be 

straight forward, especially for accumulated changes of a 

quality attribute, e.g., mechanical wearing of a component 

or the shelf-life. The object starts with an initial budget of 

quality. According to the length and magnitude of devia-

tions from the optimal transport and handling conditions, a 

certain amount is subtracted from the budget for each time 

interval. In mathematical terms, the state must stand in a 

direct integral relation to a measurable property.  

Unfortunately, most hidden states require a more elabo-

rated approach for estimation, as introduced in the next sec-

tion. 



4 Systems theory and state  

observers 

The principles behind estimating hidden states can be best 

understood in the light of systems theory. The mathemati-

cal description of the system behavior is given in the so-

called space-state form (Figure 1). In this, the changes of 

the states x(t) over time are described by ordinary differen-

tial equations with x0 as the unknown initial state and the 

control variables u(t) as inputs. In the linear case, the dif-

ferential equations can be written in matrix form. Unknown 

stochastic influences are added as system noise wI(t) to the 

changes of the states. The measurable outputs are a linear 

combination of the states with added measurement noise 

wM(t).  

The Kalman filter [12] is a common approach to estimate 

the internal system states based on the known or measured 

system inputs and outputs. In principle, such a state ob-

server can estimate multiple states based only on a single 

measured variable, but a poor relation between the number 

of input and target variables makes the filter more noise 

sensitive.  

For the non-linear case, more elaborated methods can be 

applied such as Hidden Markov Processes [2]. 

 

Figure 1 System description in state-space form and prin-

ciple of state observance 

 

 

The prediction of object properties, which cannot be di-

rectly measured, is the first key challenge for sensor-based 

DTs. Beside the above-introduced state-observers, ma-

chine-learning techniques can be applied. Therein, it must 

be kept in mind, that problems of non-observability remain, 

independent of the estimator approach.  

The ability to provide estimations for such ‘hidden’ prop-

erties is one of the key features, in which DTs go beyond 

previous IoT solutions and offline modelling. 

5 From single to multiple models 

An extensive and concise description of a physical object 

has to contain several models. For various reasons, it is rec-

ommendable to handle the models separately on the DT 

platform. Models can originate from different research 

groups. They might be available in different mathematical 

description formats and programming languages. They 

might even only run on a dedicated server, e.g., for CFD 

airflow simulations.  

The models can often be arranged in a processing chain. A 

sensor provides the temperature data. A first model calcu-

lates the expected future development of temperature for 

the remaining transport duration. Based on this prediction, 

a second model predicts the quality state for the expected 

time of arrival. A third process decides about possible in-

terventions and sends back control commands to the phys-

ical object.  

In our recent research, we linked the models in a single 

software program. However, for an increasing number of 

models and transport scenarios, such proprietary solutions 

are less adequate.  

This leads us to the second key feature, which drives DTs 

beyond IoT and isolated modelling approaches. DTs pro-

vide software platforms for linking models of different 

sources.  

One common approach to implement such platforms is the 

software pattern of “event-drive architecture”. Sensors and 

models communicate through topics. A sensor publishes its 

measurement to a certain topic, which holds, for example, 

the temperature data for one container. All models are con-

sidered as event-driven process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The banana cool chain and processing chain. Related models (NCC = no cooling control) 



After subscription to a topic, they are notified, when new 

data is available. Each sensor measurement is processed as 

soon as it becomes available. Model results are published 

to another topic, to which in turn other subsequent models 

subscribe.  

In this way, models can be programmed and tested individ-

ually, even in different programing languages. Publish and  

subscribe interfaces have been provided for Java and 

Matlab [13]. 

Topics and subscriber information is handled by a special 

data base, the so-called streaming platform. The open-

source Apache Kafka platform is dedicated to event pro-

cessing [14]. More details about event processing, our plat-

form implementation and tests of its performance can be 

found in a separate contribution [13]. 

6 Models for the banana chain 

Bananas are transported in a green, unripe state from Cen-

tral America to Europe. After unloading, ripening is initi-

ated with the help of ethylene gas in special chambers. The 

first four phases of the banana chain (Figure 2) were con-

sidered in our project: 1) The bananas are washed and 

packed after harvest without cooling. 2) The bananas are 

loaded ‘warm’ to a reefer container and cooling starts. 

Cooling continues during ocean transportation. 3) Between 

arrival at the port in Europe and the ripening chamber, 

cooling is interrupted for few hours or even days. 4) The 

ripening process is carried out either in a special chamber, 

or ̶ as in our project  ̶ directly inside the Intelligent Con-

tainer.  

The green-life model should be applied until phase 3. After 

initialization of artificial ripening, it is no longer valid. 

Other models should only be applied during an individual 

phase, e.g., the temperature prediction model for container 

cooling in phase 2, and the ripening model in phase 4. 

Models should be assigned to certain timeslots marked by 

transport events such as transport start, and -arrival, ripen-

ing start, and its completion. 

In the following, we summarize two models, which we se-

lected as examples for DT integration. More details about 

these models can be found in our earlier publications [15], 

[16]. 

The bananas are cooled down from typically 25°C to 14°C 

during the first few days in the reefer container in phase 2. 

The speed of the cooling process varies inside the con-

tainer, depending on position, the diameter of gaps between 

pallets and their packing. The efficiency of cooling, or the 

coupling of the banana boxes to the airstream, is described 

by the first time-constant model parameter kM. Even in the 

green state, bananas produce a lower quantity of thermal 

energy, given by the second parameter kP.  

 

By skilled formulation of the model equations [15], the es-

timation of the two parameters can be reduced to a linear 

system identification problem (Figure 3). Moreover, it is 

possible to formulate the parameter identification in incre-

mental form, with the estimates becoming more accurate 

with each additional temperature measurement.  

Figure 3  Parameter identification model in phase 2. For 

details see [15] 

 

During ripening in phase 4, the heat production of bananas 

largely increases, and the heat production can no longer be 

considered as a constant parameter kP, but as an additional 

unknown time-variable system state. However, the estima-

tion of kM can be considered as completed. The heat re-

moval from the box by the cooling unit can be calculated 

based on kM, thus enabling the estimation of the biological 

heat production from the model. The model structure is 

modified according to Figure 4. The model states can be 

estimated by the Kalman filter [16]. By observing changes 

of the heat production, it can be monitored whether the rip-

ening process has fully started, or heat production raising 

beyond a critical value and ripening must be stopped by 

forced cooling and ventilation. 

 

Figure 4  Modified model for estimation of ripening heat 

in phase 4. For details, see [16] 

7 Model management 

The event-driven architecture largely simplifies the assign-

ment of the models to certain timeslots, and in- and outputs. 

A configuration file can be defined for each cargo type. It 

contains a list of steps that must be carried out at each 

transport event. Models can be loaded, started, or stopped. 

The configuration file also contains lists with input and 

output topics for each model.  

The sensors send their measurements as JSON (JavaScript 

Object Notation) format. Transport events can be sent sep-

arately or combined with the sensor data. When the DT 

platform receives a transport event, it translates the event 

with help of the configuration file into a command for a 

certain model. The commands are published to a ‘configu-

ration’ topic.  

The models can be programmed independently from each 

other. All models subscribe to the configuration topic. If a 

model detects a command marked with its related name, it 

starts or stops processing the data from the input topics.  
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For example, the ripening model receives the start com-

mand after the ‘start-ripening’ event. It subscribes to two 

input topics. From the output of the cooling parameter 

identification, it reads the last estimated kM value. Only 

sensor data with a timestamp later then the ‘start-ripening’ 

event are processed from the second input topic and the 

Kalman filter is updated after each new sensor reading. The 

estimated heat production is written to an output topic.  

Models can run directly on the server, or, if they require 

another operating system, they can run on a separate work-

station. Models can be exchanged with a newer version 

without stopping the whole framework. They only require 

a network connection to the Kafka streaming platform.  

8 Digital twin prediction results 

In order to generate reproducible results, the DT platform 

was not tested with live sensor data from a real transport, 

but with a set of recorded data from previous tests. Meas-

urements, recorded with an interval of one hours, were 

played back with accelerated speed, i.e., one measurement 

per second, or 10 measurements per second. The required 

time to test a full data set was reduced to few minutes. The 

DT platform receives either real sensor data or playback 

data over the same interface. In contrast to the example in 

section 3, we were able to install sensors directly in the 

center of the boxes.  

 

The first model updates the estimation of the kM value after 

each measurement (Figure 5). After initial fluctuations, the 

estimation converts to a stable value when temperature data 

for a period of 4 days becomes available.  

 

Figure 5  Change of estimated kM values over time for ba-

nana boxes in different pallet positions inside the container. 

The legend gives the distances from the boxes to the cool-

ing unit.  

 

The last estimated kM values were fed into the ripening 

model. The values were used to calculate an initial estimate 

for the state x3. After start of ripening, the heat production 

could no longer be described with such a constant. The in-

crease of the biological heat production during the ripening 

process is shown in Figure 6.  

After 5.7 days, the ripening process was completed. The 

bananas were removed from the container and placed in a 

chamber with higher ventilation and cooling power to stop 

the process.  

 

Figure 6  Change of heat production during ripening. Same 

pallet positions as in Figure 3.    

 

The test of what-if scenarios is one of the advanced features 

of DTs. A container can have a poor cooling performance 

caused by wrong packing or old machinery equipment. The 

problem might become obvious only after the ship has left 

the harbor. In this case, the operator can test the effect of 

setpoint changes on the cargo temperature. Figure 7 

demonstrates such a what-if scenario. The container had 

left the packing station with the setpoint adjusted to 13°C. 

After 100 hours the what-if scenario was started. In a first 

step kM, kP and the initial state x0 are estimated. Afterwards 

the same model in as Figure 3 is applied with the new set-

point value as u(t).  

Similar to transport events, a what-if scenario is triggered 

by a query event with the setpoint under test and the re-

maining transport duration as additional parameters, e.g., 

via a graphical user interface. The query can be repeated at 

a later point of time to achieve a more accurate estimation 

of kM and temperature prediction.  

 

Figure 7  Setpoint scenarios, effect on predicted box tem-

perature. Comparison with the actual measured tempera-

ture for a setpoint of 13°C.  



Nevertheless, there is only little freedom to adjust the set-

point in the banana cooling chain. The scenario above was 

rather programmed for demonstration purposes.  

A more practical what-if scenario must include the fruit 

processing and delivery planning, e.g., containers, which 

are predicted to have a low green-life at arrival, can be pri-

oritized for faster handling. The effect on other containers, 

which must be postponed in turn, should be tested in ad-

vance.  

9 Summary and Conclusions 

We had already provided a full functioning prototype for 

remote quality monitoring in 2013. Two major drivers 

made us re-think the concept and software structure: 

a) Technology drivers: Our initial concept was based on 

local data processing. The Intelligent Container was able to 

decide itself about possible quality risks. Communication 

was reduced to warning messages on detected risks and oc-

casionally status messages. Due to the dramatic decrease 

of cellular communication costs, there is no longer a reason 

to withhold the data locally. Instead cloud computing has 

become the new paradigm.  

Modern streaming platforms can forward data to multiple 

processing instances within few milli seconds [13]. There 

is no longer a need to combine multiple models in a single 

software unit due to performance requirements.  

 

b) Conceptual drivers: DTs have become a new focus in 

research on transport and production logistics. This actu-

ally gave us the motivation to reconsider the concept of our 

Intelligent Container. In summary, we identified and ap-

plied the following new features, challenges, and concepts 

of DTs in our project: 

 

1) Real-time data processing: DTs are not merely dis-

playing real-time sensor data, but they also process the data 

to provide additional information. Although this feature is 

stressed in most articles about DTs, there are few guide-

lines, how it can be applied to a concrete model, e.g., to 

estimate non-measurable properties from the sensor data. 

The conversion from offline simulation models to an up-

dateable model for real-time data is still one of the big chal-

lenges in DTs. The theory of state observers is now more 

than 50 years old, nevertheless, each individual model re-

quires to re-write its mathematical description. 

 

2) Model linking: DTs provide flexible platforms to link 

multiple models and other processing instances. There are 

several solutions available beside our Kafka based plat-

form, both open-source and commercial [11]. The platform 

requires only minor changes to host new model types. Most 

work is required to write and adapt a wrapper function for 

the models to communicate with the DT platform. The ac-

tual linking can be done by assigning certain input and out-

put topics to the models.  

Our models had been tested individually with real-time 

sensor data, but we were lacking a solution to forward data 

among multiple models. With the DT streaming platform, 

we can take advantage of several model chains. The esti-

mated kM parameter for cooling performance from the first 

model provides the necessary input for subsequent models, 

e.g.: 

 

 Prediction of future temperature development, fol-

lowed by a third model to estimate the green-life at 

arrival.  

 Estimation of the current heat, produced by the ripen-

ing process. 

 Predict the effect of setpoint changes on the future 

temperature development in what-if scenarios. 

 

In summary, the concept of DTs turned out to be motivat-

ing and useful for the inclusion of live sensor data in pro-

cess models. On the example of the Intelligent Container 

we showed, how a remote sensing application can be 

adapted to take more advantages of DT concepts. Although 

there is no general solution to make a model updateable, 

most of the described steps can be adapted to other appli-

cation for extending IoT solutions with advanced DT fea-

tures. 

  



10 Literature 

[1] Defraeye, T., Shrivastava, C., Berry, T., Verboven, P., 

Onwude, D., Schudel, et al.: Digital twins are coming: 

Will we need them in supply chains of fresh horticul-

tural produce? Trends in Food Science & Technology, 

109, 245-258 (2021). doi:10.1016/j.tifs.2021.01.025 

[2] Cronrath, C., Ekström, L., Lennartson, B. Formal 

Properties of the Digital Twin – Implications for 

Learning, optimization, and Control. In: 2020 IEEE 

16th International Conference on Automation Science 

and Engineering (CASE), 679-684 (2020) 

doi:10.1109/CASE48305.2020.9216822 

[3] Jedermann, R., Lang, W.: 15 Years of Intelligent Con-

tainer Research. In M. Freitag, H. Kotzab, & N. 

Megow (Eds.), Dynamics in Logistics: Twenty-Five 

Years of Interdisciplinary Logistics Research in Bre-

men, Germany (pp. 227-247). Cham, Springer Interna-

tional Publishing, 227-247 (2021). doi:10.1007/978-3-

030-88662-2_11 

[4] Tijskens, L. M. M. (2004). Discovering the Future: 

Modelling Quality Matters. (Ph.D. Thesis), University 

of Wageningen. Retrieved from http://li-

brary.wur.nl/WebQuery/wurpubs/lang/334193   

[5] Gwanpua, S. G., Verboven, P., et. al.: The FRISBEE 

tool, a software for optimising the trade-off between 

food quality, energy use, and global warming impact 

of cold chains. Journal of Food Engineering, 148, 2-12 

(2015). doi:10.1016/j.jfoodeng.2014.06.021 

[6]  Jedermann, R., Praeger, U., Lang, W.: Challenges and 

opportunities in remote monitoring of perishable prod-

ucts. Food Packaging and Shelf Life, 14(A), 18-25 

(2017). doi:10.1016/j.fpsl.2017.08.006 

[7] Zarkani, S., Rasmussen, C. H. Remote reefer monitor-

ing looking back and looking forward. In: Cool Logis-

tics Global, 8th global conference, Bremen, Germany 

(2016) 

[8] Defraeye, T., Tagliavini, G., Wu, W., Prawiranto, K., 

Schudel, S., Assefa Kerisima, M., et al.: Digital twins 

probe into food cooling and biochemical quality 

changes for reducing losses in refrigerated supply 

chains. Resources, Conservation and Recycling, 149, 

778-794 (2019). doi:10.1016/j.resconrec.2019.06.002 

[9] Wright, L., Davidson, S.: How to tell the difference 

between a model and a digital twin. Advanced Model-

ing and Simulation in Engineering Sciences, 7(1), 13 

(2020). doi:10.1186/s40323-020-00147-4 

[10] Uhlenkamp, J. F., Hribernik, K., Wellsandt, S., Tho-

ben, K. D. Digital Twin Applications: A first systemi-

zation of their dimensions. In: 2019 IEEE Interna-

tional Conference on Engineering, Technology and In-

novation (ICE/ITMC), 1-8 (2019) 

doi:10.1109/ICE.2019.8792579 

[11] Jedermann, R., Lang, W., Geyer, M., Mahajan, P. 

(2022). Digital Twin features for the Intelligent Con-

tainer. In: Freitag, Kinra, Kotzab, Megow (eds.): Dy-

namics in Logistics. Proceedings of the 8th Interna-

tional Conference LDIC 2022, Bremen, Germany. 

Springer, International Publishing, 2022, pp. 217-228. 

doi: 10.1007/978-3-031-05359-7_18 

[12] Brown, R. G., Hwang, P. Y. C. (2012). Introduction 

to random signals and applied Kalman filtering: with 

MATLAB exercises (4. ed ed.). Hoboken, NJ: Wiley. 

[13] Singh, K., Jedermann, R. Performance of a Digital 

Twin platform for tracing quality changes in fruits. In: 

21 ITG/GMA-Fachtagung Sensoren und Messsysteme 

2022, Nürnberg (2022)  

[14] López, C. E. B.: Real-time event-based platform for 

the development of digital twin applications. The In-

ternational Journal of Advanced Manufacturing Tech-

nology, 116(3), 835-845 (2021). doi:10.1007/s00170-

021-07490-9 

[15] Jedermann, R., Geyer, M., Praeger, U., Lang, W.: 

Sea transport of bananas in containers - Parameter 

identification for a temperature model. Journal of 

Food Engineering, 115(3), 330-338 (2013). 

doi:10.1016/j.jfoodeng.2012.10.039 

[16] Jedermann, R., Lang, W. Model based estimation of 

biological heat generation during cold-chain transport 

and processing. In: 3rd IIR International Conference 

on Sustainability and the Cold Chain, St Mary’s Uni-

versity, Twickenham, London, UK(2014)  

 

https://doi.org/10.1007/978-3-031-05359-7_18

