Outline

- Show at our example who sensor networks can be applied in food logistics
- No general solution, just to motivate you to create own applications
- Discuss from our experience what advantages can be (hopefully) expected from dash7

Sensor Networks vs. single point measurements

- Measure the spatial distribution of a physical property
 - Local deviations
 - Find the Hot-Spot
- Either direct communication with base station/gateway or forwarding inside the network
- Just to measure in one point you don’t need to develop a new communication standard

The intelligent container project

- Supervision of fresh foods
 - Chilled Transport of bananas from Central America to Europe
 - Transport of meat within Europe
- Initial transfer project 2008 and 2009
- Industrial cooperation project since 2010, ending mid of 2013
The intelligent container project

- Sensor network inside the container
- Satellite Link / GSM network outside the container
- Sensors in different pallets / positions inside pallets
- 20 pallets with 1 ton of bananas in 48 boxes each, Total 1000 boxes

What to measure

<table>
<thead>
<tr>
<th>What</th>
<th>Why / why not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Cheap and accurate sensors, most influence to quality of fresh foods</td>
</tr>
<tr>
<td>Humidity</td>
<td>Low sensor accuracy, chaotic measurements e.g. humidity close to saturation, changing temperatures</td>
</tr>
<tr>
<td>Acceleration / shock</td>
<td>Some industrial interest (large paper rolls, beverages) but no project</td>
</tr>
</tbody>
</table>

Using a sensor network means TEMPERATURE

The problem

- Bananas should arrive in green ‘unripe’ state
 - Ripening by gas treatment in Europe
- From time to time a container arrives in poor quality state
 - Some / all bananas already started ripening
 - Only know it, if you open the container (Without remote sensor supervision)

The good news

- Whenever you measure temperature, you find local deviations
 - Temperature per pallet $\pm 2^\circ C$ compared to average
 - Hot-Spot can be at the door, in the middle or on the cooling unit side
The bad news

- We don't know where the Hot-Spot is
 - Temperature profile mainly influenced by gaps between pallets
 - Distribution of gaps unpredictable
 - Hot-Spot can be anywhere
 - Measure in every box

Why to measure temperature?

- It's fun to play around with sensor nodes! ✓
- You get some research money! ✓
- Is there anyone outside who wants to have hundreds of temperature curves on his desk every day?
 - A logistic company handling 1000 containers per day cannot waste too much time on a single temperature curve
 - What is the benefit of detailed spatial temperature supervision?

Processing of sensor data

- In order to sell sensor nodes, you have to find a way for automated data processing
 - Embedded processing saves communication costs
 - Which information does the user really want to know?
- If you are just doing threshold warnings, you lose 90% of the information
- Translate temperature curve into useful information

Case study bananas

- Bananas are loaded 'warm' at 25°C
 - Cooled down to 14°C during transport
- Bananas produce heat by respiration
 - Conversion of starch to sugar
 - Increasing with the age of bananas
- Translate temperature curve into useful information
 - Does cooling operate properly?
 - Is the biological activity of the bananas increasing?
Extracting parameters from temperature curves

- Example for bananas
 - Hand-made model, only valid for certain type of packing
 - State space model + parameter identification
- Find a useful model structure with meaningful parameters
 - \(k_M = \) Coupling to air flow
 = cooling performance inside one box
 - \(k_P = \) Respiration heat of bananas

\[\begin{align*}
 u_x & \rightarrow y_M \\
 & \rightarrow \left(T^*_3 + k_M \cdot u_M \cdot (1-k_M) + k_P \cdot e^{\ln(Q_{10})/10} \cdot (y_M - 13°C)\right) \\
 & \rightarrow y_M \\
\end{align*} \]

The model in real-time

- Not fully implemented yet, only wireless temperature measurement
- But model identification can be implemented on modern sensor nodes (Java / ARM 72 MHz) or processing unit inside container
- Instead of full temperature data, the sensor transmits only updates, if model parameters have changed
- Logistic operator gets directly the information he wants to have

- Traffic light
 - Red: Refuse delivery
 - Yellow: Quality inspection required, sort out some pallets
 - Green: Container OK

Example of parameter pairs in our field tests

Application of banana model

- Good curve fitting
 - Different temperature curves can be explained by changing only two parameters
- Logistic application
 - Warning on poor ventilation
 - Warning on early ripening (high respiration)
 - Warning if low relation between cooling performance and respiration heat
 \(\rightarrow \) Heat cannot be channelled away
 \(\rightarrow \) Creation of a Hot-Spot
Application of quality information

- If you know in advance, which container arrives in poor quality state
 - Priority handling in harbour
 - Inform the farm (new forklift driver not instructed?)
 - Compensate by warehouse management / planning of ripening
 - Container with boxes branded for a special customer
 → real problem, more time to handle it
 - Adjusting cooling unit
 - Refuse delivery (save of import taxes)

Application to ripening

- Respiration heat almost constant during transport
- Increases after special gas treatment for ripening
- Calculate ripening heat from temperature curve
 - BAD (noisy) approach: subtract effect of cooling from temperature curve
 - ACCURATE approach: Kalman filter
 - General approach to filter noisy signals

Application to ripening

- The Kalman filter
 - Estimate internal states of model by measurement of one/multiple outputs
 - Recursive implementation
 - Matrix multiplications + one division / matrix inversion (if more than one output)
 → embedded application
 - Estimate respiration heat as additional state variable of the model
 - Difficulty: Find noise amplitude/model for each model state

Why is dash7 better?

- So far tests with 2.4 GHz (802.15.4 / TelosB)
 - Problems with signal attenuation by “wet” food products
 - Multi-Hop message forwarding is a waste of energy
- Expectations on dash7
 - Longer communication range, less sensitive towards water containing products
 - Direct communication with base station / gateway
 - Not tested yet
Signal attenuation at 2.4 GHz

- After 0.5 meters:
 - 1/3 OK
 - 1/3 some black-outs
 - 1/3 no communication

Energy consumption of multi hop protocols

- Sending a message with some bytes of sensor data takes 15 ms radio up time (TelosB, 2.4 GHz), raw data < 1 ms
- In order to forward the messages of 30 sensors over maximum 6 hops, each sensor has to be powered for ~5 seconds per frame
- Most time spend for idle listening
- Even worse if sensors not synchronized / time frames for communication have not been negotiated yet
 - Only this last problem can be solved by low-power-listening

Direct communication
- Sensor sends its data every 15 minutes
- Keeps the radio shortly on after sending to see if new command from base station

How to start a project

- Start tests with data loggers
 - As much as you can get (>100)
 - Cheaper, don’t worry if you lose some of them
 - Be ready for surprises
- Get some ideas of the temperature problems
 - Show the customer what you can see from the data
 - Be careful, most (temperature) problems can be solved by common sense, without installing hardware.
 - Find the right places to install reduced number of expensive sensors
How many sensors

- Dreaming of hundreds
- Even 30 sensors can by nasty
 - Assembling water protected housing, changing batteries, install software, repair broken contacts
- Customer don’t want to pay for even 20 sensors per container

- Not only hardware costs, also sensor installation
 - Send 100 sensors + installation instructions to Central America and wonder what happens

Summary and Conclusions

- In real world applications, most sensor networks do only temperature measurements
- Providing automated data processing is crucial to ‘sell’ sensor networks
 - System identification and Kalman Filter introduced as example
- Dash7 will provide remote supervision at less energy/battery costs

Thanks for your attention

www.intelligentcontainer.com

Dr. Ing. Reiner Jedermann
University Bremen, FB1
Institute for Microsensors, -actors and –systems (IMSAS)
Otto-Hahn-Allee, NW1
D-28359 Bremen, GERMANY
Phone +49 421 218 62603, Fax +49 421 218 98 62603
Email rjedermann@imsas.uni-bremen.de