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Abstract. The efficiency of transport monitoring systems in the supply chain of food products can be improved 
by autonomous control, which means that decentralized intelligent objects have the ability to process 
information, to render, and to execute decisions. In our example the supervision and data evaluation tasks are 
distributed in a network of wireless sensors as local decision platforms. The supervision network can also 
include semi-passive RFID tags. The application of such battery powered embedded devices is limited by the 
reliability and range of communication as well as by the required energy resources. Autonomous control helps 
to overcome the first restriction. Communication is reduced and the system is less dependent from unreliable 
network links, but the power required for calculation increases the total energy consumption. In this paper the 
communication limitation of passive UHF RFID and active wireless sensors were analyzed by laboratory 
experiments and field tests in sea containers. Several algorithms for local data evaluation by autonomous 
control were evaluated on typical target systems for wireless units. Calculation times and the resulting energy 
consumption were measured and compared with the energy that is required for communication. 
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1. Introduction 

The supervision of food transportation has to be treated as a special case for the application of autonomous 
control. Firstly, the necessary temperature monitoring produces a huge amount of data that needs to be processed. 
Furthermore, the data has to be transferred by wireless communication, which typically operates at 866 MHz for 
passive UHF RFID or 2.4 GHz for wireless sensor networks. Therefore, the high water content is responsible for 
the high signal attenuation and communication problems in food products. But on the other hand, if the 
temperature of each transport unit is traced, it is possible to calculate changes in the product quality or losses in 
the remaining shelf life. If the delivery to retail stores is planed based on the actual shelf life instead of just a fixed 
production date, the share of products that fall below the quality acceptance threshold can be reduced (Tsironi et. 
al. 2008; Jedermann, Edmond and Lang 2008).  

The required individual temperature tracing can only be done by sensors inside the goods. First field tests have 
shown temperature deviations of several degrees Celsius in typical transports. The spatial position of temperature 
maxima and minima fluctuates for different transports (Jedermann, Moehrke and Lang 2010). The field tests 
indicate that at least 12 or 20 sensors per container are required to estimate a representation of the spatial 
temperature profile thoroughly.  

But, despite of the high amount of sensor data, the logistical planning process requires only very few 
compressed information, for example the remaining shelf life of each transport unit. Several algorithms for data 
analysis and reduction have been developed and tested by our research cluster CRC 637 “Autonomous 
Cooperating Logistic Processes – A Paradigm Shift and its Limitations” in the recent years. These include not 
only the calculation of shelf life as a function of temperature deviation, but also the prediction of the future 
temperature course, identification of faulty sensors, and spatial interpolation for points that are not outfitted with a 
physical sensor.  
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One of the basic ideas of autonomous control is to shift decision processes from a central unit to distributed 
platforms (Böse and Windt 2007). If the data is processed directly at its point of origin, communication can be 
dramatically reduced. But how does this approach perform under the boundary conditions of our use case in food 
transportation? 

Typically, the temperature monitoring of a high number of probe points is done by battery powered wireless 
sensor networks, which results in the first technical limit of the application of autonomous control. The available 
processing power is restricted by energy resources. A decision algorithm, which is implemented on an individual 
sensor node, has to compete with the radio chip and the sensor element for the battery power.  

Aim of this paper is to evaluate the energy efficiency of decision algorithms on embedded systems and relate it 
to other factors such as communication and sensor measurement.  

But, before doing so, the communication range of active wireless sensors will be considered as the second 
technical limit of the application of autonomous control. The signal attenuation of water-containing products such 
as fresh fruits was evaluated during the field tests. A set of about 20 sensor nodes was placed in different trucks 
and containers as described in section 2. In order to reduce the required energy for communication, the use of 
passive RFID tags will also be considered. But, our laboratory tests in section 3 showed that passive 
communication reacts even more sensitively to water-containing products.  

The effects of a decentralized implementation of decision algorithms on the total energy balance will be 
summarized in a final section.  

Related work 

There has been a lot of effort put in by various research groups in topics related to the remote supervision of food 
transports, but the outcome has not been linked to an overall system so far. Because of the vast amount of 
literature only single contributions are highlighted in the following overview. 

James et. al. (2006) summarized in a review article several measurements about spatial temperature deviations 
in trucks and containers and attempts to model the temperature distribution. Biologists have developed models to 
predict the effect of temperature deviations on the shelf life of numerous types of foods, for example Tijskens 
(2004). A research group from Athens showed that if deliveries are planned based on the actual shelf life instead 
of a fixed best before date, losses by decayed food can be reduced by 10% in average (Tsironi et. al. 2008). But 
their approach has not been integrated into an automated supervision system so far. 

Such a supervision system requires that the origin and the transportation history is known for every product. A 
traceability system can be implemented based on passive RFID tags (Regattieri 2007).  

If temperature data should be read out during the transport, wireless sensor networks with a higher transmission 
range than passive RFID are required. Wireless sensor networks are an active research field, especially after the 
TelosB sensor node (Crossbow 2005) with the Chipcon CC240 radio, which supports the 802.15.4 communication 
standard for low-rate wireless personal area networks (IEEE 2006), came in to the market in 2004. Several 
communication protocols have been developed, which enable forwarding messages over several hops to a base 
station, see Barrenetxea et. al. (2008) and Demirkol et. al. (2006) for example.  

However, wireless sensor networks can only cover the communication inside the means of transportation; 
typically GPRS, UMTS or a satellite link is used to cover the external communication. A protocol standard for 
access to sensor networks over the World Wide Web was suggested by the Open Geospatial Consortium (Botts et. 
al. 2007).  

Current approaches focus on data storage and management (Schneider and Kroner 2008), but only rarely on the 
automated evaluation of temperature data. Although there are several methods for sensor data analysis available, 
they have been seldom applied to sensor networks or food transportation. These include parameter estimation for 
non-linear system models (Guo 2004), fault detection and isolation by artificial neuronal networks (Zaknich 
2005), and spatial interpolation by the so-called Kriging method (Wackernagel 2003;  Walkowski 2008).  

The focus of our research is to integrate automated processing of measured transport conditions into intelligent 
sensors and container systems. The above listed methods for sensor data analysis were adapted to the use-case of 
food transport supervision and optimized for execution inside wireless sensor networks. There has been only very 
little research in this area so far: Umer and Tanin. (2010) showed how the statistical dependency of sensor 
measurements can be calculated in a decentralized way by a network of wireless sensor nodes, which is the 
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required information for spatial interpolation by the Kriging method. Furthermore, some commercial data loggers 
already include a simplified shelf life model (Zweig  2008). 

Although the signal attenuation of radio waves by water containing food products turned out as the key 
problem during our field tests, studies on signal attenuation by food products are hardly found, except for Ruiz-
Garcia et. al. (2010) for wireless sensor networks and Clarke et. al. (2006) for passive RFID.  

2. Technical limits of active communication inside packed foods 

Active communication means that both the sender and the receiver are supplied by their own power source. But, 
for battery powered wireless devices as in our use case, the energy, and thereby the transmission power, is limited. 
The TelosB wireless sensor nodes provide a transmission power of 1 mW at 2.4 GHz. Due to the signal 
attenuation, the sensor data had to be forwarded over multiple hops to the base station. We distributed between 18 
and 30 TelosB sensor nodes during our field tests inside a truck or 40 feet sea container in order to reproduce a 
typical scenario for monitoring of food transports.  

Most of the existing protocols for sensor networks solutions focus on the general case with data messages of 
arbitrary type, size, and direction of transmission. The BananaHop protocol developed by our research group 
(Jedermann et. al. 2011) is optimized to forward small data packets with temperature and humidity measurements 
over multiple hops to a base station as required by food transportation supervision. By reducing the scope of 
operation to this basic task the BananaHop protocol is more energy efficient than the SensorScope protocol 
(Barrenetxea  et. al. 2008). Furthermore, the BananaHop protocol is used as an experimental tool for recording 
radio signal strength and duration of the active radio period. 

Although the raw data transfer rate is 250 kbps (Kbit per second) according to the 802.15.4 protocol 
specification (IEEE 2006) for 2.4 GHz, the effective rate is typically much lower. The transmission of large data 
packets over a single point-to-point link can theoretically achieve an effective data transmission rate of 101 kbps 
(Jennic 2006). If the network can be extended ‘Ad-hoc’ by new sensors at any point of time, timeslots for sending 
data have to be negotiated anew in each frame. Certain mechanisms for collision avoidance have to be applied. 
The common CSMA approach (Carrier sense multiple access, Callaway 2004, page 65) first probes whether the 
channel is clear. If not, the transfer is delayed for a random period. Control messages to search for routes to the 
base station require additional channel capacity. Furthermore, the data payload size is rather small in transport 
supervision scenarios. Only 6 bytes of user data have to be transmitted per frame containing temperature, 
humidity, and battery voltage measurements. The radio of each sensor has to be powered up for 7.5 seconds per 
frame in order to send its own measurement data, wait for an acknowledgment and to forward the data of 30 other 
sensors by the BananaHop protocol. This example shows that the effective data transfer rate of multi-hop 
protocols can drop to values as low as 0.2 kbps. 

The energy consumption for communication was calculated as follows: For sending a single message without 
acknowledgment the radio has to be powered for 15 ms, requiring 720 µJ per message at the current consumption 
of 20 mA at the minimal voltage of 2.4 Volts for the TelosB. The radio draws almost the same current in receive 
mode, but because the exact point of time when the message arrives is unknown, the radio has to be powered for 
an extended period, typically 100 ms, which sums up to a total energy of 5.5 mJ for receive and transmit. The 
radio-up period of the BananaHop protocol in the example above results in an average energy consumption of 360 
mJ per frame to transmit one sensor message including overhead for forwarding. The network can operate for 
7000 measurement and communication cycles with a typical battery capacity of 3000 mAh per sensor. 

The implementation of the external communication either by GPRS/UMTS or over a satellite link is handled in 
a separate paper (Becker el. al. 2010). 

Experimental data losses 

The application of wireless sensor networks is not only restricted by energy and effective data transfer rate, but 
most crucially by the communication range, especially if the radio wave propagation is hindered by water-
containing products. The radio link quality and the performance of the BananaHop protocol was tested under the 
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conditions of real transports in 2009 and 2010. The field tests were supported by Dole Fresh Fruit, Cargobull 
Telematics, and Rungis Express as partners of a transfer project of our research cluster CRC 637. Four separate 
experiments were carried out in order to analyse the conditions during different parts of the logistic chain, such as 
short distance truck delivery, long distance sea transportation, and processes inside a warehouse.  

1. During the first experiment 20 sensors were installed at the inner walls of a refrigerated truck. Frozen fish and 
chilled fish products were loaded in two separate compartments. The truck was only partly filled, leaving a free 
airspace of about 1.5 meters above the products. The products were stored inside the truck over the weekend 
and then delivered to a nearby customer in Bremen, Germany. Only the packet rate of single links was recorded 
during this first experiment, the full protocol implementation was not yet available. But an analysis of the link 
data showed that each sensor in each frame had several alternatives to contact the base station either directly or 
by forwarding over one additional hop. 

2. The truck in the second experiment was split in 3 compartments for different temperature zones. Boxes with 
frozen meat, chilled fish, and vegetables were stacked at the walls. A corridor in middle of the truck was left 
empty. The goods were delivered from a distribution centre in the outskirts of Berlin to several customers in the 
city centre. The whole tour including the return to the distribution centre took 8 hours.  

3. A third test was carried out inside a banana ripening room at a warehouse close to Hamburg. The sensors were 
packed in the corners of banana boxes. The boxes with sensors were placed in the centre of the pallets. Ten 
pallets were loaded into one row of the ripening room. Temperature and link packet rates were recorded over 3 
days.  

4. The fourth experiment was carried out during 2 weeks of sea transportation of bananas inside a 40 feet 
refrigerated container from Costa Rica to Hamburg. The densely packed container left only a little free airspace 
below and above the pallets of 10 cm height.  

Table 1 gives a summary of the 4 experiments, showing large variations in the percentage of sensor data packets 
that were not forwarded to the base station (Loss-Rate) and the number of required hops (Max-Hops).  

Table 1. Summary of experiments with BananaHop protocol 

Experimental setup Date Number 
of 
Sensors 

Distance 
between 
sensors 

Sensor 
mounting 

Max- 
Hops 

Loss- 
Rate 

1. Truck, partly 
filled with fish 

April 
2009 

20 1 … 4 m 
14 at walls, 6 
inside freight 

2 0 % 

2. Truck partly 
filled (mixed load) 

March 
2010 

30 1 ... 2 m At walls 2 1.3 % 

3. Banana ripening 
room 

July 
2009 

18 
0.25 … 
0.5 m 

Inside corner 
of boxes 

5 0.5 % 

4. Bananacontainer, 
densely packed  

Sep. 
2009 

20 0.5 m 
Inside centre 

of boxes 
5 24 % 

 
The truck tests with a lot of free airspace between the sensors were rather uncritical. At maximum 1.3 % of the 
data messages were lost in one experiment. Three quarters of the sensor nodes could directly send to the base 
station (1 Hop). The data from the remaining sensors had to be forwarded over one additional sensor (2 Hops).  

However, if the sensor nodes were packed inside pallets, the data had to be forwarded over up to 5 hops. The 
experiment in the ripening room showed almost no problems concerning the Loss-Rate. But, inside the packed sea 
container the Loss-Rate rose to an unacceptable value of 24%. Although the sea container experiment was also the 
test with the longest duration of two weeks, the length of the experiment cannot be held responsible for the high 
Loss-Rate. Even if only the first two days of the sea container experiment are considered, the loss rate is with 19% 
much higher as in the truck and banana ripening room tests. The high Loss-Rate is rather caused by the limited 
free air space inside the loaded container and by the different positions of the sensor nodes inside the boxes. Due 
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to packing, a little free airspace is left in the corners of the boxes, which creates an empty channel in a vertical 
stack of boxes. The sensors in the ripening room experiment could communicate through this channel, whereas 
the sensors in the sea container experiment were packed in the centre of the boxes without any free airspace 
surrounding them.  

Unfortunately, the last experiment with the highest Loss-Rate is the one that is closest to real-world 
application. Long distance transports are the most critical for quality degradation, and therefore, the first candidate 
for sensor supervision. In order to save costs, containers are densely packed. Partly filled trucks are only found in 
local delivery. Furthermore, the direct core temperature is required for correct quality prediction. Sensors in the 
corners or close to the surface of the boxes are partly affected by the stream of cooling air resulting in 
unpredictable behaviour. Tests have shown that small variations in the sensor position can have a large effect on 
the measured temperature. Some of the sensors mounted close to the surface are mostly affected by the cooling air 
and cool down with a time constant less than 0.5 days. Others measure rather the fruit temperature and require 
more than 3 days to cool down. 

Analysis of signal attenuation in banana sea containers 

Therefore, the last experiment should be analyzed in more detail. The packet rate was not considered for the 
network as a whole, but for the direct links between pairs of sensors. The average packet rate of the 12 links with 
a distance of 0.5 meters was 52 %. One-third of these links failed completely, another third had temporary 
dropouts with durations between 8 hours and several days, and the remaining third provided almost stable 
communication. The BananaHop bypassed some of the missing and poor links by an additional hop, but 24 % of 
all messages remained undelivered. Part of these failures is due to inappropriate routing by the network protocol. 
But a further analysis of the recorded link information showed that for 20 % of all messages there is no physical 
route available from the source sensor to the base station during the relevant time frame. Therefore, an 
improvement of the BananaHop protocol or the selection of another protocol could decrease the Loss-Rate by 4% 
only, but it will not solve the general problem. In order to achieve an acceptable Loss-Rate it is necessary to 
modify the radio hardware instead. 

A radio with higher transmission power can be used as the first alternative. The ZigBit Amp OEM Modules 
from Meshnetics (2008), for example, provide a radio output power of 100 mW, which is 20 dBm higher than that 
of the TelosB nodes. 

The other alternative is to use a radio operating at a lower frequency range, which is less sensitive against 
signal attenuation by water. The signal attenuation is caused by dielectric losses, which are proportional to the 
imaginary part of the relative electric permittivity εR. Cole and Cole (1941) provided a formula to calculate εR as a 
function of frequency (Equation 1 with ε = 6, ε0 = 80, fReso = 16 GHz at room temperature).  
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0

1
f

f
j

fR




 


  

(1) 

For typical frequencies between 433 MHz and 2.4 GHz the imaginary part, and thereby the signal attenuation, is 
almost proportional to the frequency. Therefore, with regard to signal attenuation, a low frequency would be the 
best choice.  

Unfortunately, the selection of the radio carrier frequency is limited to only few ISM (industrial, scientific and 
medical) radio bands, which are available worldwide or at least in large regions. Large bandwidths are only 
available at the higher frequencies. For example the ISM band at 2.4 GHz provides a bandwidth of 80 MHz, 
which can host 16 separate channels for wireless sensor networks with a data rate of 250 kbps each (IEEE 2006). 
The ISM band at 915 MHz provides only 26 MHz of bandwidth, but this band is only available in the American 
continent. For Europe the frequency has to be switched to the ISM band at 868 MHz with only 0.6 MHz 
bandwidth (IEEE 2006). The ISM band 433 MHz is not commonly used for wireless sensor networks because the 
total bandwidth is restricted to 1.6 MHz and the duty cycle is limited to 10 % (IEEE 2006, Annex F). The energy 
consumption increases for lower bandwidths because the transmission is slower and the radio has to be powered 
for a longer period of time. 
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3. Limitations of passive RFID communication 

Passive communication needs no power source on the side of the tag and thereby overcomes the energy 
restrictions of active communication. But on the other hand, the restrictions in communication range and data 
transfer rate are even more severe. These two limitations of passive RFID were tested in laboratory experiments in 
order to decide whether passive RFID is a useful alternative to active wireless sensor nodes for the temperature 
supervision of food products.  

RFID tags can be combined with a sensor. Such semi-passive RFID tags contain a battery that is only used to 
power the sensor and to store the measured values in non-volatile memory. The communication is still passive, 
meaning that the required energy is provided by the electro-magnetic field of the reader. The reader receives the 
reflected signal from the tag. Because the radio wave has to cover two times the distance between reader and tag, 
the signal strength decreases with the fourth power of the distance, not with the second power as in active 
communication.  

The experiments were carried out with EPC Generation 2 Tags in the UHF frequency range of 866 MHz. The 
EPC standard is recommended by the major food retailers. Furthermore, it offers the highest data bandwidth.  

The signal attenuation by water bottles was tested during the first experiment. Eight tags were placed on the 
surface of the stack of water bottles and 11 tags behind the first, second, and third rows of bottles (Figure 1, 
Jedermann et. al. 2008). Reliable identification was possible for the surface tags with a minimum reader power of 
200 mW. Tags after the first row required 500 mW of reader power to achieve 100% identification rate. But the 
tags after the second row achieved only an identification rate of 50%, even at the maximum reader power of 1 
Watt. The high sensitivity of passive RFID against water is also supported by other studies. Clarke et. al. (2006) 
observed a reading rate of 97 % in a pallet with empty bottles. But, when the bottles were filled with water the 
reading rate dropped to 0.8 %.  

 

 

Fig. 1. Position of tags at surface of boxes and at bottle necks. 

The reading of RFID tags that are packed inside a container is completely infeasible. Wireless RFID readers can 
also not be applied for continuous transport supervision. Typically, the RFID reader modules consume between 2 
to 30 Watts. The only practical solution is to read the tags during the loading or unloading of the container. Tags 
should be mounted to the surface of the product; even 10 cm of water-containing material can reduce the 
identification rate to an unacceptable value.  

If the container is loaded by a fork lift, the data transfer rate becomes a critical factor. The tags are only visible 
for a short period for the reader antennas. The second experiment was carried out with a pallet of beer bottles 
placed on a foil wrapper machine. The machine operated at its maximum speed of 10 rotations per minute 
equivalent to an angular velocity of 2.2 km/h. Bulk identification was not problematic; each of the 10 tags at the 
surface of the pallet could be read at least 29 times per rotation. Figure 2 shows the time window for 
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identification. For 1.4 seconds, more than 90 % of the tags could be identified at the maximum reader power. The 
length of this window, during which the tags are visible to the reader, was compared with the measured data 
transfer time for different operations in Table 2. The time to read 1 Kbyte of data, equivalent to 700 temperature 
values with a resolution of 12 bits, could only be estimated based on a projection of the protocol specification, 
because the semi-passive sensor tags were not available in 2008 when the experiment was carried out.  

 

Table 2. RFID data transfer time for different operations 

Operation Experiment Data transfer time 

Identification of 4 tags Water bottles, static 43 ms 

Reading of 28 data bytes Water bottles, static 22 ms 

Reading of 1 Kbyte temperature data Simulation 172 ms 

Writing of 28 data bytes Water bottles, static 197 ms 

Writing of 28 data bytes Rotating pallet 267 ms 
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Fig. 2. Time window for identification measured on a fail wrapper machine 

Seven tags each with 1 Kbyte of memory can be identified and read out during one rotation under optimal 
conditions. But this rate can hardly be achieved for the reading of sensor tags by a RFID gate during the unloading 
of a container. Fork lifts typically move faster than the angular speed of only 2.2 km/h as in our experiment. 
Communication is often distorted and data frames have to be repeated.  

For this reason we dropped the idea of reading out the full temperature history from semi passive sensor tags. 
But, the use of low cost RFID technology can become an option if data processing is integrated into the tag. If 
only the remaining shelf life and the maximum temperature have to be transmitted, a multitude of tags could be 
read during the unloading and the low data transfer rate would not be an obstacle. This idea of autonomous control 
on RFID level assumes that tags with programmable micro controller are available, which unfortunately is not the 
case yet. Therefore, we currently use passive RFID tags only for identification in our project.  
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4. Required processor energy for decision making 

Poor radio links can be compensated by repeated transmissions, but this further increases the energy required for 
communication. The most promising way to reduce the total energy consumption is to minimize the number of 
data messages by intelligent algorithms that decide which data contains only just redundant information and which 
contains crucial new information for the logistic planning process. Only the summarized data, the calculated 
effects of sensor deviations and sensor failure state information, are transmitted instead of the complete 
measurement data set. But the decision, which data is crucial and which not, needs processing time on the 
embedded system and thereby energy as well. In order to evaluate the advantages of local decision making, the 
required energy in (milli) Joule per Decision was evaluated for different example algorithms.  

However, it is hard to decide whether a local implementation of the algorithm is useful, if only the bare value 
for energy consumption is known. First of all, the considered algorithms bring clear advantages on their own, 
independent from their location of the CPU platform, either central or distributed in the network. They perform 
sensor data evaluation tasks that had to be done manually in the past or have not been done at all. Only with 
automated processing tools it is possible to carefully analyze the temperature data of 20 sensors from each 
container.  

Secondly, it is hardly feasible to directly compare the algorithms because they have different objectives. Two 
of them predict quality changes or the future temperature development. Two other algorithms for detection of 
faulty sensors by plausibility checking also have different capabilities: The first focuses on slowly increasing 
tolerances, and the second one is good in detection of sudden offsets that only affect a single sensor. 

Finally, the algorithms are executed on different system layers. Some process the data of single sensors; others 
combine the data of sensor clusters or group of neighbouring sensors, and the rest process the data of the whole 
container. Some need only one time initialization at the beginning of the transport and only very few resources to 
process the data in the following steps. Others are programmed in an incremental form and need almost no 
initialization. 

The following section evaluates the advantages of a decentralized local implementation versus a central 
implementation with regard to energy consumption. Because the required processing power of most algorithms 
exceeds the capabilities of the TelosB platform, the iMote2 wireless sensor node from Crossbow (2007) was 
introduced as alternate hardware platform. It uses the same CC2420 radio chip as the TelosB, but provides an 
ARM XScale processor with much higher computation recourses, but also higher energy consumption. The ARM 
processor allows the use of more elaborated programming languages as ‘C#’ and ‘Java’ and complex 
mathematical operations such as large matrix inversions. The TelosB sensors were programmed in ‘NesC’, which 
is a special dialect of the ‘C’ programming language. The differences between the two wireless platforms and 
typical values for supply voltage and clock rate are summarized in Table 3.  

Table 3. Energy properties of applied wireless sensor nodes. 

Sensor node TelosB iMote2 

Processor MSP430 ARM XScale 

RAM 10 Kbyte 32 Mbyte 

Flash 48 Kbyte 32 Mbyte 

Typical clock rate 4 MHz 416 MHz 

Typical supply Voltage 2.4 Volt 3.6 Volt 

CPU current (difference between 
active and idle CPU) 

1.5 mA 50 mA 

Energy per second of calculation 3,6 mJ 180 mJ 

 
The applied algorithms are briefly introduced before the experimental results of the required CPU times are 
presented.  
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Estimation of temperature related effects on shelf life 

In general, the effect of temperature deviations on the quality of foods is of more importance than the temperature 
itself for the supervision of chilled food transports. The so-called shelf life models (Jedermann, Edmond and Lang 
2008) were applied to calculate the remaining quality as a function of the temperature history. The considered 
model applies two Arrhenius type equations to model the temperature dependency of bio-chemical aging and 
decay processes. The algorithm was programmed in an incremental form, only two exponential functions and two 
divisions have to be calculated after each temperature measurement.  

So far, the shelf life model is the only algorithm that has been implemented on the TelosB platform. First tests 
were carried out in 2008 (Jedermann, Edmond and Lang 2008). Integer operations with 16 or 32 bit were used 
instead of floating points for faster execution. The average error of integer implementation compared to double 
precision floating point calculation is about 0.5 %. The results were compared with a floating point 
implementation on the iMote2 platform for the current study.  

Only the resulting remaining shelf life has to be read out at the end of transport instead of transmission of the 
full temperature history. Alternatively, the system can send a warning message if the shelf life drops below a 
critical threshold. If the shelf life and the temperature are in range, no communication is necessary at all. 

Prediction of temperature development 

The future temperature values inside the container can be calculated by using system identification techniques, 
which estimate the missing parameters for a given model structure. Online recursive methods require much lower 
resources in terms of memory and CPU power than offline counterparts, and they are easier to implement on 
embedded platforms. It is also of paramount importance to have lower order matrix dimensions. The Feedback-
Hammerstein parameter adaptation algorithm was implemented on the iMote2 platform (Palafox-Albarrán 2010). 
The advantage of the Feedback-Hammerstein is that it can also estimate parameters of non-linear effects such as 
the thermal energy generated by the ripening of the bananas as a function of temperature. Furthermore, it does not 
need any matrix inversion. In total, 3 parameters are estimated and updated after each measurement. In order to 
give an accurate prediction, the model parameters have to be iterated over 3 days at a measurement interval of 1 
hour, equivalent to 72 cycles. The 3 model parameters were transmitted to the transport operator after this training 
period. Further communication is only required if the measured temperature deviates from the model prediction. 
The corrected model parameters and the current temperature have to be retransmitted in this case. 

Spatial interpolation by Kriging 

Methods to estimate the temperature in points of space as a function of the neighbouring measurements bring 
further benefits. An estimation of temperature can be necessary for some points because that particular point has 
no physical sensor at all, the sensor is currently turned off to save energy, or the sensor is unreliable due to faulty 
measurements. In general, this problem is solved by spatial interpolation. The Kriging method (Jedermann and 
Lang 2009) provides an accurate estimation, which is better than simple methods like inverse distance weighting. 
The measurements of the given sensors (source points) are multiplied with weighting factors to ascertain the 
temperature in destination points that are not allocated with sensors. The first step of Kriging is to calculate the 
weighting matrix. It is then applied to the current measurements in the second step. In general, the coefficients of 
the weighting matrix have to be calculated only once for each type of transport. The weighting matrix has only to 
be re-calculated if the loading scheme is modified and the temperature dependency between points change due to 
changed air streams. A further advantage of the Kriging method is that it can evaluate its own accuracy by 
calculation of the so-called Kriging Variance as the average error of prediction of the interpolated temperatures 
(Walkowski 2008). 

The Kriging method does not work on the level of single sensors as the previous algorithms, but for groups of 
sensors. In the first test scenario, the Kriging method was implemented on one iMote2 sensor node in order to 
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predict the temperature in 20 destination points by the measurements of 20 source points. Compared to a network 
that queries all 40 sensors, half of the sensors can be powered down for saving energy. The decision, which 
sensors should be turned off, can be based on a calculation of the Kriging Variance for their spatial locations. 
Those with a low Kriging Variance value should have the lowest approximation error for a spatial prediction. But 
so far, this selection process is not yet automated.  

Autonomous plausibility checking 

The risk to draw wrong conclusion due to erroneous measurements increases with the size of the network. Sensors 
might be faulty because of low battery voltage, mechanical damage, or drifts by aging. Therefore, it is essential to 
evaluate the reliability of the sensor records. Any abnormality in a wireless sensor network needs to be detected, 
isolated, and investigated. The measurements of one sensor can be denoted as plausible, partially plausible, 
partially implausible, or implausible. The deviation can be caused either by a sensor fault or a transport disorder 
such as unreported opening of the container doors.  

Plausibility checking needs in general full access to the measurement history. If an autonomous transport 
monitoring system sends only compressed sensor data such as calculated shelf life and model parameters to the 
transport operator, the algorithm for plausibility checking also needs to be implemented locally.  

Two different approaches for plausibility checking in transport supervision were developed by our group. Both 
compare a prediction for a particular point with the actual measurement at the same location. But, they differ in 
the way how the prediction is calculated and by their ability to detect different classes of sensor faults.  

The Kriging method was modified to detect sensors with high tolerances. The actual measurement of each 
sensor was compared with a spatial interpolation of the remaining 39 sensors in our test scenario. If the residuum 
between measurement and prediction exceeds the error that should be expected according to the Kriging Variance 
by a certain factor, a warning message is triggered. The Kriging method detects when a measurement deviates 
from the typical spatial profile of the temperature distribution. Kriging is well suited to detect high sensor 
tolerances and slowly increasing offsets. But this approach can only reduce the external communication of the 
container, not the internal one of the sensor network, because the data of all available sensors are required to 
calculate the prediction.  

Artificial neuronal networks for plausibility checking 

Artificial neural network (ANN) is a knowledge based technique including nonlinear mapping features and 
generalization which makes it a favourite for model-free data processing (Zaknich 2005).  

A plausibility test for clusters of 4 sensors each was implemented by a multi-layer perceptron ANN network 
(Jabbari et. al. 2009). The value for the sensor undergoing the test is predicted based on its own last measurement 
and the current measurements of its 3 neighbours. The network consists of two hidden layers with 4 neurons each 
and an output layer that sums up the weighted data. Using two hidden layers increases the nonlinear mapping 
feature between the input pattern and the target. This ANN approach is the best choice to detect sudden changes, 
for example, by a mechanical damage of the sensor element, battery failure, or intrusion of warm air though an 
open door. But, slowly increasing offsets cannot be detected because the network simply adapts to it.  

The weighting factors of the ANN are trained by a modified backpropagation technique. To overcome the 
memory and processing constraints, the entire network can be updated continuously for training and data 
approximation solely by using a limited number of neurons and samples, which is called sliding backpropagation 
(Jabbari et. al. 2009). The new algorithm deals with the limitations of wireless sensor nodes in data approximation 
by using a simplified network. Therefore, the new algorithm is an efficient solution in terms of calculation time 
and memory size compared to the traditional backpropagation technique. The energy consumption of the sliding 
backpropagation technique is adjustable by the determination of network architecture, training parameters, and the 
desired data approximation accuracy. The backpropagation is repeated until the output error drops below a 
training threshold. The tests were carried out with a medium setting of 0.1 °C. A setting for higher accuracy of 
0.001 °C requires 3 times more CPU resources.  
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The required classification of different fault scenarios is handled by a second ANN. A probabilistic radial basis 
function (RBF) network can discern between internal sensor faults and external influences (Jabbari et. al. 2010). 

The ANN plausibility testing was implemented under the .Net Micro Framework with C# on the iMote2 sensor 
nodes and not under Linux with Java as with the other algorithms. The .Net Micro Framework allows only a fixed 
clock frequency of 104 MHz. The reduced CPU power consumption was considered in the following calculations. 
Another contribution from our group by Wang et. al. (2010) showed that it is also feasible to implement an ANN 
on the TelosB platform. Sliding backpropagation training for a network with 4 input neurons can be executed in 
162 ms on a TelosB node per step. But, those results could not directly be compared because its ANN structure 
differs from the one that was used for plausibility checking.  

Dynamic combination of algorithms 

So far, the presented algorithms for autonomous sensor data evaluation were handled separately. But in many 
application scenarios it would be beneficial to combine two or more of these processes. For example, shelf life 
prediction and plausibility checking can be combined. Furthermore, if the system detects a faulty sensor by 
plausibility checking it can apply a third algorithm to replace the missing sensor value by a spatial interpolation.  

Because it is not known in advance which of the algorithms are required and permanently running, all 
algorithms create a high overhead; a highly developed system should be able to execute and integrate a number of 
algorithms only on demand. The system should also provide for the case that the user wants to update an existing 
algorithm with a new software version or wants to install a new type of data evaluation method.  

The JAVA based OSGi framework (formerly Open Source Gateway Initiative) was installed on the iMote2 to 
enable such features (Wessels et. al. 2010). OSGi can update and install the so-called software bundles during 
runtime without interrupting the execution of the remainder of the system. Except for the ANN based plausibility 
checking all algorithms are available as OSGi software bundles. Once started, the OSGi framework requires only 
a little CPU time. Only the installation of new bundles, which takes in average 470 ms of CPU time, has to be 
taken into consideration.  

5. Measurement of required CPU time 

The required CPU time for the execution of the described algorithms was measured in laboratory experiments. A 
digital output pin was programmed to toggle after each model step on the TelosB nodes. The time per incremental 
model update was measured with an oscilloscope. Timing measurements on the iMote2 nodes were carried out by 
making use of the system clock. The results are summarized in Table 4. CPU times for initialization and 
incremental update are listed separately. The table also lists the energy consumption for an example scenario 
where the algorithm is initialized and runs for 50 measurement cycles. For the algorithms, which require spatial 
data, a setup with 40 sensors distributed on the walls of a delivery truck was considered. Two complete data sets 
were available from tests in cooperation with a German food provider for hotels and restaurants (Jedermann and 
Lang 2009). The required energy was divided by the number of input sensors for easier comparison. 

Further energy consumers 

The measured values for energy consumption of different algorithms have to be compared with other energy 
consumers and battery capacity in order to say whether the performance of local decision making is acceptable or 
not.  

The sensor measurements were rather uncritical. A typical combined temperature and humidity sensor such as 
the SHT75 from Sensirion requires only 0.1 mJ per measurement. Only gas sensors cause energy problems 
because the detector element has to be heated for at least one minute to several hundred degrees Celsius. An 
example calculation for the AS-MLK sensor for methane from Applied Sensors resulted in an energy consumption 
of 4500 mJ per measurement.  
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Table 4. Comparison of decision algorithms. 

Algorithm Shelf life Shelf life Temperature 
prediction 

Platform / 
Programming Language 

TelosB / NesC 
(integer) 

iMote2 / Java 
(OSGi) 

iMote2 / Java 
(OSGi) 

Code size 0.9 Kbyte 7.3 Kbyte 8.4 Kbyte 

Number of input 
sensors per instance 

1 1 1 

CPU time for 
initialization 

- - 
72 steps initial 

training 
360 ms 

Incremental operation 
and CPU time per step  

Update shelf life 
0.96 ms 

Update shelf life 
0.58 ms 

Update model 
parameters 

5 ms 

Energy for processing 
50 sampling intervals 
including initialization 
per input sensor 

0.17 mJ 5 mJ 110 mJ 

Reduced 
communication 

Only warning for 
unexpected drop of 

shelf life 

Only warning for 
unexpected drop of 

shelf life 

Only model 
parameters instead 
of full temperature 

history 

 
 
The stand-by current of the two hardware platforms also has to be considered. The TelosB sensor requires only 1 
µA when no communication, measurement, or calculation tasks are carried out. But unfortunately, the Linux 
operating system for the iMote2 does not support low-power deep sleep modes of the ARM processor. The clock 
frequency can only be switched down to 104 MHz, which still requires a supply current of 55 mA. Before the 
iMote2 can be applied on transports over several days or weeks, the operating system has to be extended. A low 
power mode, which halts the CPU but continues to periodically refresh the volatile memory, would require about 
1 mA. The energy consumers and the battery capacity are summarized in Table 5.  
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Table 4. Continued 

Algorithm Spatial 
interpolation by 

Kriging 

Plausibility testing 
by Kriging 

Plausibility testing 
by ANN 

Platform / 
Programming Language 

iMote2 / Java 
(OSGi) 

iMote2 / Java 
(OSGi) 

iMote2 (104 MHz) 
/ C# 

Code size 40.3 Kbyte 40.3 Kbyte 8.4 Kbyte 

Number of input 
sensors per instance 

20 40 4 

CPU time for 
initialization 

Calculation of 
weighting matrix 

2189 ms 

Calculation of 
weighting matrix 

58500 ms 
- 

Incremental operation 
and CPU time per step  

Application of 
matrix 

17.5 ms 

Application of 
matrix 
70 ms 

Back propagation 
Training  
770 ms 

Energy for processing 
50 sampling intervals 
including initialization 
per input sensor 

28 mJ 279 mJ 860 mJ 

Reduced 
communication 

About 50% of the 
sensors can be 

turned off 

Only external 
communication 

reduced 

Communication 
restricted to small 

clusters 

Table 5. Summary of energy consumption 

Operation Required energy 

Sending 50 messages (single direct link transmit 
and receive / including multi-hop overhead) 

275 mJ / 18000 mJ 

Decision algorithms (for 50 measurement 
intervals/one sensor) 

0.17 mJ … 860 mJ 

Measure temperature and humidity 50 times 5 mJ 

One gas measurement 4500 mJ 

Installation of new OSGi Bundle 85 mJ 

Standby one day (TelosB/iMote2) 207 mJ / 17 100 000 mJ 

Battery capacity (TelosB with 2*AA /iMote2 with 
3*AAA) 

25 500 000 mJ / 11 650 000 mJ 

Calculation versus communication energy 

From an energy point of view, the local decision making algorithms can only be advantageous if the amount of 
communication is reduced. The reduction of the number of temperature or humidity measurements brings limited 
benefits only. In the following the total energy for 50 sample intervals was considered in order to attain a fair 
comparison between algorithms with and without initialization. The algorithms are first compared with a direct 
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send-receive link without the need for collision avoidance, acknowledgment and other protocol overhead. Such a 
direct link requires 275 mJ to transmit and receive 50 sensor messages. The resulting energy consumptions are 
summarized in Figure 3. 

 Shelf li
fe model on TelosB 

 Shelf li
fe model on iM

ote2 

 Measure temperture and humidity 

 Send/Receive single hop

 Temperature prediction

 Kriging interpolation

 Plausibility
 ANN 

 Send/Receive multi hop

0.1 1 10 100 1000 10000

Decision
making

Measurement and
Communication

Energy in mJ

 

Fig. 3. Comparison of energy consumption for 50 intervals 

The shelf life algorithm showed the best performance and the clearest case for local implementation of decision 
algorithms. The calculation of 50 model steps takes much less energy (0.17 mJ / 5 mJ) on both the hardware 
platforms than sending the same number of sensor messages over a direct link. The shelf life algorithm would 
break even if the amount of transferred data is cut down by only 1 message, but in fact the communication is 
almost reduced to zero because only occasional configuration and warning messages have to be sent. The 
algorithm could run even with the thin-film battery of semi-passive RFID tags (Jedermann, Edmond and Lang 
2008).  

The implementation on the TelosB was 30 times more energy efficient than that on the iMote2. This is partly 
due to the fact that integer instead of floating point arithmetic was used for TelosB. But, even a floating point 
implementation on the TelosB requires 6 times less energy per model step than on the iMote2. The MSP430 
processor of the TelosB platform provides the best energy efficiency, but unfortunately it is unable to handle more 
complex algorithms such as Kriging due to memory restrictions.  

The local implementation of the model based temperature prediction also gives clear advantages compared to a 
central solution. After the initial training phase the communication is reduced to occasional parameter updates. 
The required energy for 50 model steps (110 mJ) is also lower than sending the full temperature data set over a 
direct link. 

The Kriging method for spatial interpolation needs much larger amount of energy for the initial calculation of 
the weighting matrix. But after initialization, the Kriging method replaces the measurements of 20 sensors, not 
only 1 as in the previous examples. The related energy consumption per input sensor (28 mJ) is much lower than 
the saved energy for sensors that can be turned off (275 mJ per sensor). 

The case for the two plausibility checking methods is a bit more complicated. The plausibility checking by 
Kriging reduces only the external communication, which is a benefit on its own in regard to the costs of satellite 
or mobile data transfer tariffs, but this cannot be compared to energy costs. Umer and Tanin (2010) suggested a 
distributed implementation of Kriging. The weighting matrix does not take the whole network as input, but only 5 
to 10 neighbour sensors. If the matrices are calculated by dedicated sensor nodes inside the network, the internal 
communication of the sensor network could be reduced as well. 

The ANN based plausibility checking needs the highest computation resources (860 mJ) per sensor, but it also 
includes a method for classification of different fault types. Other as the Kriging method, the ANN based 
approach is well suited for an implementation within the network. Only 4 sensors of a cluster instead of all 40 
have to send their data to a cluster head, which carries out the plausibility checking. The communication of the 
wireless sensor network can be reduced by 90% in the test scenario.  
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Under the optimistic assumption of a network that consists only of direct links, a distributed implementation of 
the ANN brings no energy advantages. But the protocol overhead cannot be neglected in a real wireless sensor 
network. If the energy consumption of the BananaHop protocol is taken as reference (18000 mJ), the calculation 
of the sliding backpropagation requires only 5% of the saved communication energy.  

6. Summary and conclusions 

The spatial supervision of temperature and other sensor parameters of transports of perishable goods create a high 
data volume that is difficult to handle manually. Several automated algorithms for sensor data processing were 
introduced, which not only summarize the sensor data but also provide additional types of information such as the 
calculated remaining shelf life or indication of faulty sensors. Because the two suggested methods for plausibility 
checking have different focuses, it is recommended to implement both of them in order to detect slow increasing 
tolerances as well as sudden offsets by malfunction of the sensors or external influences.  

The methods for automated sensor data processing can be implemented either centrally on a server in the office 
of the transport operator or locally, directly on the sensor nodes or a processing platform inside the means of 
transportation. But before the local implementation can come into practice, two technical problems have to be 
solved: Firstly, the high signal attenuation by water-containing products has to be compensated by adapted radio 
hardware; secondly, the operating system for the iMote2 has to be extended to support low-power sleep modes in 
order to reduce the stand-by current.  

The measurements of the required CPU times showed that it is feasible to run the algorithms on low-power 
embedded systems. Decisions can be made at the hardware platform where the input data has its spatial origin. 
This is especially the case for the temperature supervision of perishable products with a high volume of distributed 
sensor data. On the other hand, the transport planning of ‘dry’ goods without sensor supervision mainly requires 
data, which do not origin from the truck or container such as new orders and traffic information. 

The distributed implementation of sensor data processing mainly brings advantages for the case of perishable 
goods. The communication volume is reduced, thereby the energy is saved and the system becomes less 
dependent from communication failures. 

The methods for shelf life calculation, temperature prediction, and Kriging interpolation save more energy than 
they require for computation, even under the optimistic assumption that the sensor network can run without any 
protocol overhead. The case for more complex algorithms for plausibility checking depends on the external 
communication costs and the internal protocol type. But an energy comparison with typical multi-hop protocols 
also shows clear benefits.  

The suggested algorithms can run on the CPU of typical sensor nodes without hardware extensions. If the 
installation of a wireless sensor network for spatial transport supervision is planned, it is recommended to extend 
the sensor node software for autonomous data processing concurrently. 
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