
Mikrosensoren, -aktoren und -systeme (IMSAS)

Prof. Dr.-Ing. Walter Lang

Thesis

Automated Calibration for Wireless Flow Sensors

of

Chanaka Lloyd

30th August 2010

Supervised by

Prof. Dr.-Ing. Walter Lang

Dr.-Ing. Reiner Jedermann

DECLARATION

Ich versichere, daÿ die vorliegende Arbeit � bis auf die o�zielle Betreuung durch den Lehrstuhl � ohne

Fremde Hilfe von mir durchgeführt wurde. Die verwendete Literatur ist im Literaturverzeichnis voll-

ständig angegeben.

I certify that I have conducted this work on my own and no other supporting material has been used

other than those which are listed as references.

Bremen, 30th August 2010

Chanaka Prasaraka Lloyd

i

ACKNOWLEDGMENT

First and foremost, I am most grateful for my supervisors: Prof. Walter Lang, Director, IMSAS, Uni-

versity of Bremen for his patronage; and Reiner Jedermann, my second supervisor, for assisting me

throughout with invaluable engineering advice and having accompanied me with practical implementa-

tions of the project.

In addition, I wish to pay my gratitude to several sta� members of IMSAS for their assistance in various af-

fairs: Christoph Sosna and Miron Kropp in thermal sensors; Adam Sklorz in LabVIEW R© and UltiBoard R©;

Dieter Gauck and Darren Gauld in software and operating system installations; Cord Winkelmann in

SolidEdge R©; Gabriel Büschel in admistrative help; and, Alexander Wessels. Additionally, I am thankful

for the coding advice from Alfonso Cardell Bilbao of SensiAll, Canary Islands, Spain.

My special thanks goes to Sandeep Maane, Pawel Fulmyk, Javier Palafox, and Zuolin Xu for their

invaluable help and tolerance in assisting me in testing the sensor calibration during night and day.

Also, I wish to thank the German Research Foundation (DFG) for having funded this research project

as part of the Collaborative Research Centre 637. LaTex, LYX, and Ubuntu were used for this thesis and

am delighted to thank those organizations and contributors.

Finally, I am warmed by the support given by my family and my girl friend, Zuolin.

It would not have been possible to have the project completed successfully without the assistance of the

aforesaid personnel.

ii

ABSTRACT

This thesis presents the work conducted as an advanced extension to the project work Integrating Thermal

Flow Sensor to TelosB Module, presented on 6th May 2009 by the author of this thesis report. The

added features are autonomous calibration and temperature compensation for thermal �ow sensor, a new

air channel design, updated electronics for the ampli�er circuit, calibration method and results, and a

proposal for a sophisticated test bed for future calibration.

The report presents a methodology for autonomous calibration and compensation for the TS10_1 type

thermal �ow sensor to measure the air �ow speed. The design of software and hardware incorporates

provision to integrate the work to the Intelligent Container project. Automated calibration, dependent

on varying ambient temperature, is carried out with a digital potentiometer. Manual Switching technique

used in the previous work is also digitized. Therefore, the complete system is fully automated to measure

the air �ow speeds and radio back to a LabVIEW program in the host computer. Calibration of the

thermal sensor is achieved by simulating air �ow of di�erent speeds in the range of 1 to 5 m/s using a

remote controlled car, on which the sensor is mounted.

This embedded system is based on TinyOS on TelosB wireless sensor nodes, and the programming is

done with nesC language. WSN node programming and the circuit design is optimized to consume as

less energy as possible in accordance with the stringent requirements of the Intelligent Container project.

iii

c© Copyright by Chanaka Lloyd, 2010

All Rights Reserved

iv

Contents

1 INTRODUCTION 1

1.1 Intelligent Container Project . 1

1.2 Flow Sensor . 2

1.3 Previous Work . 3

1.4 Requirement and Task . 4

1.5 Chapter Breakdown and Reference Guide . 4

2 DESIGN HYPOTHESIS 6

2.1 The Main Target . 6

2.2 Overall Design Hypothesis . 6

2.3 Hardware Design Hypothesis . 8

2.4 Software Design Hypothesis . 9

2.5 Testing Hypothesis . 10

3 PROJECT DESIGN 11

3.1 Working Principle . 11

3.2 Hardware Design Implementation . 15

3.2.1 Air Channel . 15

3.2.2 Digital Components Overview . 19

3.2.3 Wheatstone Bridge . 23

3.2.4 Printed Circuit Board (PCB) . 24

3.3 Automated Balance and Compensation Technique . 24

3.4 Software Design Implementation . 28

3.4.1 TelosB Application . 29

4 TESTING 33

4.1 Testbed . 33

4.2 Test Methodology . 33

4.3 Test Results Extraction and Manipulation . 35

4.4 Proposal for an Advanced Testbed . 38

5 RESULTS and ANALYSIS 42

5.1 Flow Value Plots for Di�erent Temperature Regions . 42

5.2 Air Flow Speed vs. Flow Sensor Measurements Relation 45

5.2.1 Error Quanti�cation . 47

5.2.2 Inverted Flow Equation . 49

5.3 Additional Test for Temperature Zone e . 49

5.4 Energy Consumption . 51

v

6 CONCLUSION 53

BIBLIOGRAPHY 54

Appendix I 55

Appendix II 57

Appendix III 74

vi

List of Figures

1 Spatial temperature variation inside a container . 2

2 Flow sensor (Source: IMSAS/MCB) . 3

3 Left: Temperature pro�le of the �ow sensor; Right: The �ow sensor with its channel . . . 3

4 Chapter breakdown . 5

5 Hypothetical Di�erential Voltage vs. Average Air Flow Speed 6

6 Overall Design . 7

7 Flow measurement - Constant temperature Method . 9

8 Software Controller . 9

9 Wheatstone Bridge (Left) and Bridge Power Supply (Right) components 11

10 Working Principle . 13

11 GUI Working Principle . 14

12 Air Flow Speed vs. Thermopile Voltage Di�erence . 16

13 Two section air channel . 17

14 Solid Edge 3D Channel Design . 18

15 Overall circuit �ow diagram with all inputs and outputs of the common bus 19

16 Pin con�guration of ADG734 (left: showing manual jumpers, right: with original pin names) 20

17 Pin con�guration of TelosB extension U2 and U28 . 21

18 MAX5483 Pin Con�guration (Top) and Command Decoding (Bottom) 22

19 PCB (left: top and bottom views superimposed, right: actual circuit) 24

20 First Execution Loop of TelosB Program . 30

21 Second Execution Loop of TelosB program . 32

22 Testbed . 33

23 Test Strip . 34

24 Air Flow Speed vs. Flow (ADC value), Temperature Region 'c' 36

25 An individual test run . 37

26 Proposed testbed . 39

27 Flow Value vs. Received Packet Number for Temp Zone a (Top: test4; Middle: test5;

Bottom: test6) . 43

28 Flow Value vs. Received Packet Number for Temp Zone b (Top: test1; Middle: test8;

Bottom: test2) . 44

29 Flow Value vs. Received Packet Number for Temp Zone c (test7) 44

30 Flow Value vs. Received Packet Number for Temp Zone d (test10) 45

31 Average Air Speed (m/s) vs. Average Flow Value (ADC value) 46

32 Temp Zone c plot (mis�t) . 47

vii

33 Curve Fitting Error . 48

34 Average Air Speed vs. Average Flow for Temp Zone e . 50

35 Heater Voltage (right: same graph showin ripple e�ect) 51

36 Left: Total current; Right: Radio current . 52

37 Left: MAX1683; Right: MAX4462 . 52

38 Mini-project circuit diagram . 55

39 File wiring mesh . 59

40 Circuit . 74

41 Channel 2D . 75

viii

List of Tables

1 Bus Signal Notation . 11

2 Manual and Digital Switching Equivalence . 20

3 Logic simpli�cation . 21

4 Pin con�guration of U2 and U28 extensions . 21

5 V ∆ for di�erent multiplication factors . 24

6 Temperature Compensation dR Calculation . 28

7 The conducted experiments . 42

8 NesC programming �les - General Application . 58

ix

1 INTRODUCTION

The embedded systems have become a day-to-day term among the engineering and scienti�c communities.

It is a discipline that has seen heavy investment and research go in to it during the last three decades.

As a result, embedded systems are playing a major role in consumer electronics, bringing quality of life

to masses.

Wireless Sensor Networks (WSN) is as fast-developed discipline as embedded systems. WSNs are a

necessity than a luxury in all communities around the world, and they are heavily used in all aspects of

human life. Radio communication enables the sensor output to be monitored in real-time�or be stored

for later use�which makes the whole idea of sensing a novelty. Such a network of communication among

active nodes gives way to providing intelligent solutions for myriad of problems, ranging from domestic

to commerce.

An integrated platform of these two pervasive technologies in tandem makes even a stronger platform on

which many solutions can be developed. One such platforms is TelosB from Crossbow Technology IncTM .

There are other such platforms such as Meshbean, iMote, TinyNode, Micaz, Iris, Eyes, etc. The work in

this thesis uses TelosB as the main platform for its versatility and good overall performance; however,

Meshbean platform is proposed for future deployment for its superior radio communication strength.

The Intelligent Container Project is a research attempt at bettering the ambient conditions during trans-

port to improve the quality of perishable foods and extending shelf life times. IMSAS plays a pioneering

role in the aforesaid project among other partners of Microsystems Center Bremen (MCB). The Intel-

ligent Container project requires the assistance of several sensors, such as temperature, humidity, �ow,

and ethylene, to monitor the ambient conditions. Thermal �ow sensor (1.2) is the subject of this thesis;

electronics are developed to amplify the �ow sensor signal and calibrate it autonomously. This work car-

ries far advanced software algorithms and digitized electronics�plus extensive testing for the calibration

process�over the mini project Integrating Thermal Flow Sensor to TelosB Module[1].

1.1 Intelligent Container Project

The following is an excerpt from the Intelligent Container project website.

"The Microsystems Center Bremen developed the 'Intelligent Container' as an autonomous transport

monitoring system for perishable and sensitive goods. The systems links technologies from the �elds of

RFID, sensor networks, and software agents to provide a permanent and freight-speci�c supervision of

each transport package along the supply chain. Local pre-processing of sensor information reduces costs

for external mobile communication. A quality prediction model runs on an embedded processor platform

that is integrated into the container, truck or semi-trailer. If a risk for the quality of loaded freight items

is detected, the autonomous supervision system sends a warning message to the transport operator [2]."

One future goal of the project is air �ow monitoring within the sea freights. The importance of air

�ow monitoring stems from the stagnating air pockets within a freight that gives way to temperature

rise, hence reducing the quality and the shelf life of perishable foods under transportation. Such a loss

amounts to millions of dollars annually around the world. Indeed the Intelligent Container project is

already capable of identifying such abnormal temperatures within a container; however, it lacks the

assistance of air �ow sensors to determine if such a rise in temperature is due to elevated enzyme activity

within foods or cold air not reaching certain areas of the container.

The air �ow sensors alleviate this problem altogether by monitoring di�erent sections of the container

periodically by measuring the air �ow speeds. If the container shows such stagnant air pockets, a warn-

ing message can be issued to warn the o�cers on deck and to the shippers of the goods. Either the

1

arrangement of food pallets within the container can be rearranged (where possible) or by learning from

that particular incident, future containers can be packed allowing enough space for the cold air from the

reefer unit1 to reach warmer areas.

The following �gure elaborates the above point. The �gure below shows surface temperature variation

on a truck container, partially loaded with frozen foods. The refrigeration unit is attached just below the

ceiling, and the fan direction is marked on the top surface of the �gure.

Figure 1: Spatial temperature variation inside a container

Incorrect arrangement of pallets could produce a temperature variation pro�le as above. A separate study

conducted in IMSAS allows the shippers of goods to visualize how the pallets are packed inside a container

[3]. Therefore, the temperature variation pro�le, visual of the pallet arrangement, and �ow sensor data

give better understanding of the prevalent situation. That enables the crew to take appropriate action

to prevent temperature anomalies and save the foods from perishing prematurely.

1.2 Flow Sensor

The thermal �ow sensor is a product of IMSAS. It is manufactured by a high temperature fabrication

process, and its measurement methodology is based on a combination of two thermopiles (made of p-

doped polysilicon andWTi) and a heater (WTi). The LPCVD (Low Pressure Chemical Vapor Deposition)

passivation layer of these sensors makes it more robust towards liquid and gaseous applications. There are

15 thermocouples on each thermopile. Each thermocouple is positioned at close range to the heater. The

heater is powered up and it emits heat to the measured medium, be it gas or liquid. When the medium is

allowed to pass over the sensor, the thermopiles measure the temperature pro�le (i. accumulated voltages

of all thermocouples) of the medium with the use of its thermocouples. The measured temperature pro�le

is dependent on the type of medium and the rate of �ow. In e�ect, the measurement of temperature

pro�le means the measurement of the end-to-end, accumulated voltage di�erence of each thermopile. The

1Reefer unit is the refrigeration unit attached to each container during transportation to maintain a desired temperature.

2

voltage di�erence of the two thermopiles vs. �ow rate characteristics enable measurement of �ow rate

[1, 4, 5, 6].

The following is a photographed thermal �ow sensor.

Figure 2: Flow sensor (Source: IMSAS/MCB)

When air passes over the �ow sensor, it produces a maximum voltage di�erence signal of +/- 45 mV2.

The measured laboratory values for the voltage output of each thermopile�with air as the medium and

at 50oC�was approx. 82 mV. The following �gure on the left (at zero �ow rate, but heater powered up)

illustrates the temperature pro�le concept described above; the �ow sensor of type TS10_1 used in this

study with its air channel is shown on the right.

Figure 3: Left: Temperature pro�le of the �ow sensor; Right: The �ow sensor with its channel

The air channel design shown above is a new design and is covered in Chapter 3.2.1.

1.3 Previous Work

The mini-project work, stated earlier, by the author involved basic integration of the thermal �ow sensor

to the TelosB node. Integration was done with a feed-forward di�erential ampli�er circuit; additionally,

the circuitry involved methods for manual bridge3 balancing and temperature compensation (Appendix I,

Figure 6). The programmed node reads the ampli�er signal and transmits it to a base-station. However,

two main factors prevents it from deployment as a prototype for �ow measurement in containers.

2Voltage di�erence depends on many factors: temperature, medium, distance to the heater, etc. However, this laboratory
value is for air as medium, as measured previously by Christoph Sosna, IMSAS.

3Here, bridge refers to a wheatstone bridge.

3

1. Uncalibrated �ow sensor.

2. Manual bridge balancing and compensation.

For successful deployment of the �ow sensor in the Intelligent Container project requires much more

development than above. However, overcoming the above can be classi�ed as the minimum criteria

for prototype deployment.

1.4 Requirement and Task

The principle requirement of the project is to satisfy the minimum criteria stated in previous section. In

addition, with the accumulated experience during the test phase of the project, an advanced testbed for

future calibration and an algorithm for the deployment of a �ow prototype in the Intelligent Container

project is proposed. The tasks in detail are as follows.

1. Autonomous balancing of the wheatstone bridge.

2. Autonomous temperature compensation of the bridge for 25K above the ambient temperature

(50oC).

3. New air channel design.

4. Prototype PCB board for the electronics with provision for additional component integration in

future.

5. Formulation of a testbed for calibration of the thermal �ow sensor.

6. LabVIEW application to display the �ow speed (General Application) and to record data in cali-

bration tests (Test Application).

7. Matlab application for calibration test data extraction, manipulation, and analysis.

8. Programming of TelosB motes to sample �ow measurement and to facilitate (1) and (2) above.

1.5 Chapter Breakdown and Reference Guide

The following �gure of nested rectangles represents the entire structure of the thesis. Each rectangle

is representative of individual chapters. The chapter titles are placed just inside the top margin of the

rectangles, whereas the short phrases seen inside the left margin of each rectangle means to provide a

very concise description of each chapter.

4

Chapter 1: Introduction

Chapter 2: Design Hypothesis

Chapter 3: Project Design

Chapter 4: Testing

Chapter 5: Results & Analysis

Conclusion
&

Outlook

P
ro

je
ct

 e
nt

ry
, t

he
 B

IG
 p

ic
tu

re

H
/W

,
S

/W
. T

e
st

in
g

hy
po

th
es

is

P
ro

gr
am

m
in

g
di

a
gr

am
s

an
d

 e
le

ct
ro

ni
cs

T
e

st
 b

e
d

an
d

m
et

ho
do

lo
gy

T
e

st
 r

e
su

lts

Chapter 6:

Figure 4: Chapter breakdown

Chapter 1 introduces the backdrop of the previous work leading up to this work, the Intelligent Container

project, the �ow sensor, and the tasks ful�lled. Chapter 2 then presents the hardware, software, and

testing tasks in conjecture form. This hypothetical description of the entire project design�with many

pictorial depictions�is meant to familiarize the reader with the BIG picture. Then comes the detailed

descriptions of the previously described hypothetical models. Chapter 3 also illustrates the bridge bal-

ancing technique and the working principle of the embedded system designed. Chapter 4 deals with all

aspects related to the tests conducted in order to calibrate the �ow sensor. It also carries a proposal

for an advanced testbed model for more precise calibration. Chapter 5 illustrates all test result data,

energy consumption aspects, and some analysis of the results. Conclusion and the outlook of the work

is discussed in Chapter 6. Then follows the Bibliography and the Appendix. The appendices carry the

bulk of the programming code among other supplementary data of relevance to the project.

A data Compact Disk (CD) is also provided with this thesis with all data �les, �gures, and code.

5

2 DESIGN HYPOTHESIS

This chapter compounds all software, hardware and testing used in the actual project in to a complete

hypothetical model. Therefore, the di�erent units of the sections to follow is discussed in abstraction,

leaving out the seemingly complicated details. However, all details are discussed in depth in Chapter 3.

2.1 The Main Target

Among all the tasks listed in the introduction section, one stands out as the main target of this master

thesis. It is described below.

The di�erential voltage of the �ow sensor varies with di�erent air �ow speeds. Therefore, the main target

is to calibrate the sensor under di�erent ambient temperatures to �nd a relation between the ampli�ed

voltage di�erence and the air �ow speed. It is visualized in �gure below. Here, the di�erential voltage is

the di�erence of voltage between the two thermopiles of the �ow sensor.

Air Flow Speed (m/s)

D
iff

e
re

n
tia

l
V

o
lta

ge
 (

m
V

)

1 2 3 4 5

T1

T2

T3

T4

Figure 5: Hypothetical Di�erential Voltage vs. Average Air Flow Speed

Mathematically, the relation for a certain temperature Ti can be depicted as follows:

4V = f i (ν̄) (1)

4V is the thermopile voltage di�erence, and ν̄ is the air �ow speed. Determining this function f for

T1, T2, T3... for the given �ow sensor is the main target.

2.2 Overall Design Hypothesis

The following diagram illustrates all individual components and entities of the involved electronics. It

also portrays the software applications which read and process the signals from circuitry.

6

Host PC

Amplifier Circuit

Wheatstone
Bridge

Bridge
Amplifier

Bridge Power
Supply

Flow Signal
Amplifier

(Diff. Amp.)

TelosB Extension Connectors

Flow
Sensor

TelosB Mote

Power
Supply
Doubler

Reference
Voltage for
Diff. Amp.

Digital
Potentiometer

Digital Quad
Switch

Test/Calibration
Application
(LabVIEW)

Matlab (offline) Data Analysis
Application

Main GUI Application

∆V

Heater

Ribbon cable

Radio signal

R

Data & Clock

FlowADCSpeed vs . FlowADC

Amp o/p
Read
signal Flow

2.3 m/s

Figure 6: Overall Design

The arrows lines in the above diagram are indicative of data directions, power connections, and commu-

nication signals. The rectangle boxes nested within the main components carry descriptions, which are

self explanatory. The complete design consists mainly of 6 components:

1. Ampli�er Circuit

This is largely the circuit design carried forward from the mini-project (Chapter 1.3), except the

manual potentiometer and jumper settings. It is important to note that one of Digital Potentiome-

ter's lower branches is the heater of the Flow Sensor.

2. Digital Quad Switch

There are 4 2-way switches in this component. The circuit design uses 3 of them: one each for

Bridge Power Supply, Wheatstone Bridge, and Bridge Ampli�er (see Figure above). This replaces

the manual switching performed in the earlier work (see J2, J3, J5, J10 in Appendix I Figure 6).

Digital switching is controlled by the TelosB mote dependent on 3 modes: operation, calibration,

and compensation.

7

3. Digital Potentiometer

The manual potentiometer adjustment replaces digital potentiometer adjustment. This component

is controlled by the TelosB mote. R, depicted above, is its variable resistance connected to one

branch of the Wheatstone Bridge.

4. Flow Sensor

This the thermal �ow sensor detailed in Chapter 1.2. Its heater is powered by the Wheatstone

Bridge and outputs ∆V (the voltage di�erence between the two thermopiles) to the di�erential

ampli�er in Flow Signal Ampli�er.

5. TelosB Mote

The mote is programmed with the master control program, written in NesC language. TelosB mote

runs on TinyOS (see Appendix I for more details on TinyOS and NesC). The mote is programmed

with two applications - one for normal operation and another for calibration testing. The latter has

a faster sampling rate of the �ow sensor.

6. HostPC (software applications)

PC runs the Main GUI Application to visualize the data sent from the TelosB mote. This application

reads the received data from the base-station and calculates an average value for the �ow samples

within a moving window, and then deduces the speed of the air �ow and displays it. The Test

Application is used to read the test measurement data during the calibration process. Subsequently,

its data is processed by the Matlab Data Analysis Application to deduce the Air Flow Speed vs.

Flow Values relation. A display will show the average speed of the �ow (an example of 2.3 m/s is

shown).

Power Supply Doubler, as the name suggests, doubles the supply voltage and powers up the Bridge Power

Supply. The Bridge Power Supply is controlled by the Digital Quad Switch and the Read signal from

the TelosB mote. Read signal is switched ON every second under normal operation, every 100 ms under

calibration testing. Reference Voltage for Di�. Amp. provides a reference voltage of 1.2 V4 to the Flow

Signal Ampli�er.

2.3 Hardware Design Hypothesis

Although shown separately for clarity, Ampli�er Circuit, Digital Quad Switch, and Digital Potentiometer

form a single unit. This unit connects to the TelosB, �ow sensor, and the battery power supply; TelosB

connects via 2 connectors; heater of the �ow is powered by the circuit, and it samples the �ow readings.

The circuit unit is responsible for 3 main tasks:

1. Autonomous balance of the Wheatstone Bridge.

The Digital Potentiometer acts on the command signals received from the TelosB. In an algorithm

speci�c manner, it raises or lowers its resistance and balances the lower half of the bridge.

2. Autonomous compensation of the Wheatstone Bridge for temperature.

In order to sample the �ow sensor, the balanced resistance value�as per above�of the Digital

Potentiometer is raised by another ∆R (see Equation 9). Therefore, to balance the Wheatstone

Bridge, a current should be passed through until the heater resistance raises itself by an amount

equal to ∆R. This is Constant Temperature method (shown in the �gure below).

4Only speci�c technical values are given in this Chapter. Details are covered in Chapter 3 and 4.

8

Time

H
e

at
er

 V
o

lta
ge

t0 t1

Vsupply

RT,ambient

RT,ambient+∆25K

t2

Figure 7: Flow measurement - Constant temperature Method

3. Sample the �ow sensor periodically.

This is the main, intended purpose of the circuit. Flow sampling is always preceded by the two

tasks above, provided the balancing of bridge is deemed necessary according to a set criteria. This

criteria is dependent on the ambient temperature (see Criteria 1 in Chapter 3.1). Flow sensor is

sampled during the last 10 ms of the t1 to t2 in the above �gure, where it is most constant.

2.4 Software Design Hypothesis

The software application, programmed in to TelosB, is the main controller. Two di�erent programs are

used: one as the main program to sample the calibrated sensor; other is to help in testing, i.e. calibration

process. The ins and outs of the softwear are described in length in Chapter 3.4. Therefore, following �ow

diagram is only a concise guide to help understand how the software controller works. Only two loops

are visible; the other loops required to run the controller are nested within the latter two. Frequency of

running some loops are determined on accessed necessity. Algorithm provides provision to change the

such requirements as desired.

Balance Bridge

Yes

Program
Entry

Add
Compensation

RUN mode
START

RUN mode
END

Radio
Measurements

Bridge
Balance
Criteria

No

Figure 8: Software Controller

Upon entry to the program, initially, the bridge is balanced. Then compensation is added. Subsequent to

these two steps, the system is ready to take �ow measurements (and of other sensors mounted on TelosB

9

mote). System operates on 3 main modes: operation (or run mode), calibration5, and compensation.

Program enters the RUN mode and check if the Bridge Balance Criteria is satis�ed; if yes, it samples the

sensors and radio them to the base-station; if no, it enters calibration mode and balances the bridge once

more. Then the program marks the end of the sampling session and repeats the RUN mode.

2.5 Testing Hypothesis

The system underwent heavy testing to calibrate the sensor. Sensor calibration aims to achieve the

relation as described in Chapter 2.1. The calibration process demands 5 requirements:

1. Air �ows of di�erent speeds ranging from 0 to 5 m/s6.

2. Di�erent ambient temperatures.

3. Means of achieving laminar air �ow speeds.

4. Means of channeling the air over the sensor.

5. Means of achieving di�erent temperatures.

Points above are discussed in detail in Chapter 4.

5Note that this calibration represents balancing of the bridge, di�erent from the calibration of the �ow sensor.
6In general, air �ow speed within a container does not exceed 5 m/s

10

3 PROJECT DESIGN

This chapter discusses all inherent details of the circuit, applications, and controller programs briefed in

the previous chapter.

3.1 Working Principle

Prior to discussing the working principle of the system, certain component blocks introduced in the

hypothesis�and repeated in 3.1�need to be detailed. Wheatstone Bridge and Bridge Power Supply

components are shown in the �gure below.

Figure 9: Wheatstone Bridge (Left) and Bridge Power Supply (Right) components

The line in Bold represents the bus. The inputs and outputs to the bus of the above �gure are explained

in the table below.

Signal I/O Description

D1 Common Common pin of the S1 two-way switch of digital quad
switch.
Connects to either S1A or PWR (main power, 4 V)

D2 Common Common pin of the S2 two-way switch of digital quad
switch.
Connects S2A.

S1A O Voltage doubler output is accessed via this pin. It is
connected The Bridge Power Supply is power with the
voltage doubler output.

S2A O Direct output of the OP90 (Pin 6).
S3B O S3B connects to GND to complete the circuit during

balancing to light up the Green LED.
R_OP90 O The output of the voltage divider connected the direct

output of the OP90.
Connects to TelosB U2 connector.

RFL_3V I The TelosB pin 7 signal (3V Read Signal).
2X_PWR I Voltage doubler output is connected to this pin.

W NC One end of the variable resistor in the Digital
Potentiometer.

Table 1: Bus Signal Notation

See Figure 6 for following descriptions:

11

Power Supply Doubler MAX1683

Reference Voltage for Di�. Amp. LM385

Bridge Ampli�er OP90 within Wheatstone Bridge (above �gure)

Digital Quad Switch ADG_734

Digital Potentiometer MAX5483

Flow Signal Ampli�er MAX4462H

Flow Sensor Heater, TP1, and TP2 (disassembled)

Working Principle of the Circuit and TelosB

The following �ow diagram illustrates the working principle of the circuit, coupled with controller signals

from TelosB. This section is better referenced with the mini project circuit (Figure 6), the new circuit

(Figure 6), and Chapters 2.2, 2.3 and 2.4.

12

Criteria 1

Read OP90 output

Criteria 2

START

First Run

No

Yes

Write Rstart

Digital Potentiometer

Increment/
Decrement Digital

Potentiometer

Yes

Balance Mode

Compensation Mode

Write RB+∆R
Digital Potentiometer

S
to

re

R
B

S
to

re

as
 T

ol
d

Run Mode

Take Measurements
Delay

Flow Measurement
20 ms

NOT first run RBYes

Measure Flow

Send Radio
Data

Delay till
Next Measurement

Send Radio
Data

No

First run after
balance

Wait for all
measurements

No

No

Figure 10: Working Principle

Note: dashed arrow lines indicate sub-processes, whereas the straight arrow lines indicate main processes.

RB is the resistance of the digital potentiometer at balance point.

When TelosB is booted, it checks a �ag to ascertain if it is the �rst run. If yes, system goes in to Balance

Mode. In Balance Mode, the digital potentiometer is written to with a prede�ned resistance value. It

may or may not result in balancing the bridge. Therefore, OP90 output is checked to see if Criteria 2 is

13

satis�ed.

Criteria 2: OP90 must be within a predetermined range OR the swing counter (de�ned in Chapter

3.4) must reach its limit. The reason for having a bi-conditional criteria is due to indeterminable exact

value of the heater resistance of the �ow sensor at the time of performing a bridge balance and the high

sensitivity of the bridge for each step increase of the digital potentiometer.

Subsequently, if criteria 2 is not satis�ed the digital potentiometer is either increased or decreased. If

the OP90 output is in the low range, a step increase results; if in high range, a step decrease results.

This iterative loop is repeated till criteria 2 is satis�ed. Then the system enters Compensation Mode. It

adds 4R amount to the digital potentiometer, determined by Equation 9. Thereafter, the system enters

Run Mode and takes measurements (temperature, humidity, and battery voltage). It also launches a

subroutine (a background process) to delay the sampling of �ow sensor by 20 ms. This is to ensure that

the measurements are taken during the last 10 ms of the region t1 to t2 in Figure 2 (Note: t0 to t2 is

30 ms). When all measurements are completed (sampling duration defers vastly for di�erent sensors:

temperature/humidity approx. 200 ms, �ow approx. 10 ms), all measurement data is sent via the radio.

Subsequently, the system then waits a time determined by the master timer and repeats the loop. In the

following loop it is checked for First Run �ag, and then proceeds to Criteria 1.

Criteria 1: (Told − 1)oC < Tnew < (Told + 1)oC where Tnew is the most recent (last) temperature

measurement and Told is one temperature measurement before the last.

Therefore, since Told is unavailable, program proceeds to take measurements. In the following loop, the

program enters criteria 1 once more and enters Balance Mode if criteria 1 is unsatis�ed; or, it proceeds

to take measurements. The program loops until powered down.

Working Principle of the GUI

On the host PC side, the data is read and displayed as see in the �gure below. The program is written

in LabVIEW.

Spurious
Packets?

Analyze Serial Data
&

Sort Packets

Discard Yes

Read Measurement
Data

Store

Display
Measurements

BufferSTART Read Data

Receive Radio
Data

(Basestation)

PC Serial
Buffer

Figure 11: GUI Working Principle

The base-station data is read continuously as received from the TelosB mote. Subroutine component on

top of the above graph shows the latter process. It is read serially and bu�ered in internal PC bu�ers

14

(host controller USB bu�ers). Since bu�ers operate on FIFO concept, if the user GUI is not activated,

internal bu�ers could over�ow, yet retaining the most recent data in memory.

When the program is initiated, internally bu�ered data is read and bu�ered in program designated

memory locations for program-related purposes. This is done as the program itself has no directives over

the internal PC bu�ers for data control - only to read and write. Then the program bu�ered data is �rst

checked for the packet frame indicators (0x7E) at the end and the beginning. Any serial data that do not

comply with the latter is discarded as spurious. The rest of the data is sorted and disassembled�packet

by packet�to read the information within. In the main application, temperature, humidity, battery

voltage, sequence number of the packet, balance step of the digital potentiometer, etc. are displayed.

The time is also recorded for analysis purposes. The read data is then displayed; thereafter, the program

loops. The read loop illustrated above has a duration of 100 ms. Read loop resides within a much larger

GUI program. The details of which will be covered in Chapter 3.4.

3.2 Hardware Design Implementation

3.2.1 Air Channel

The �ow sensor measures the speed of air �ow based on a stream of air passing just over and parallel

to its surface. It is important for the air stream to be as laminar as possible. Otherwise, the resulting

thermopile voltages may �uctuate, yielding spurious results in calibration.

Therefore, a housing is required to direct air to pass just over the surface, �ow to be as laminar as

possible, and width of �ow not to be more than 1.5 mm. This housing is commonly know as a channel.

The channel design was inspired by the channel used with �ow sensors to measure �uid speed (see Figure

5 of [1]). The dimensions of certain characteristics of the new channel design are similar to that of its

predecessor, e.g. inner channel and two smaller ones on either side. However, to accommodate new

requirements, a redesign is required.

Basis for Channel Redesign

Some analysis is required on the old design in order to approach the redesign basis. Following diagram7

represents the relation between Air Flow Speed vs. Thermopile Voltage Di�erence. It is of paramount

importance to note the values of the axes, it is this fact the entire redesign is based on.

7These empirical data are from an experiment conducted in IMSAS in 2007.

15

���
����
����
��

� � �� �� �� �� �� �� �� �� �	 �� �
 �� �
 �� �� �� ��
�
� �	� �	� �	

��������	
����
��������

���������	
������	�
Figure 12: Air Flow Speed vs. Thermopile Voltage Di�erence

The dimensions of the channel used in the above experiment are 1.5 mm width and 1 mm height (cross

section 1.5 mm2). The air �ow through the channel is measured with SLM (Standard Liters per Minute),

which is converted to m/s using the cross sectional area. Data is obtained at 23.9oC for TS10_1 type

�ow sensor.

It is evident that reliable data for air �ow speed starts approximately around 3 m/s. The voltage di�erence

peaks approximately at 70 m/s. Therefore, it is possible to �nd a relation for this portion of the graph.

However, for the purposes of determining air �ow speed in a container, the above relation is unusable.

Therefore, a work-around is required. The idea is to step up the low air �ow speeds (0 - 5 m/s) by a

factor so that the resulting air �ow speeds fall within the region identi�ed above.

Continuity Equation in Fluid Dynamics

Continuity equation at steady state:

∂ρ

∂t
+∇ · (ρu) = 0 (2)

where ρ is the density of �uid and u the �uid velocity in vector form. For incompressible �uid, the above

equation can be simpli�ed as follows:

∇ · u = 0 (3)

Therefore, basically, the mass continuity equation becomes a volume continuity equation. Assuming, the

air passing over the �ow sensor in this work is incompressible, the �ow speeds can reach speeds in the

region identi�ed in Figure 3.2.1. It can be achieved as follows:

16

Figure 13: Two section air channel

Equation 3 becomes:

D2
eVe = D2

i Vi (4)

However, since air is compressible the above equation does not hold in above form. The sudden air

pressure�in trying to squeeze in to a smaller diameter section�creates turbulence. If the air stream

is applied long enough the air squeezes, overcoming the turbulence. Due to the created turbulence, the

air density in the wider section (ρe) and the narrower section will change with time (t). These changing

density functions are unknown and not within the scope of this thesis to determine them. However, using

these time dependent density functions, it is possible to form an alternate mass continuity equation from

Equation 4:

ρe (t)D2
eVe ≈ ρi (t)D2

i Vi (5)

Although the ratio ρe (t) /ρi (t) is indeterminable, it is reasonable to assume�provided the �ow persists

long enough�the �ow speed of the air in the internal channel becomes higher than the external air

speed. This hypothesis can only be proven by reverse deduction: if air �ow speeds of 0 to 5 m/s yields a

reasonable relation in testing, it is because the air �ow speeds in the internal channel reaches the region

recognized above in Figure 3.2.1.

Based on this assumption, a new two-section channel is designed. Due to manufacturing di�culties, a

smooth curvature is not achievable between the two sections. The channel is designed with Solid Edge
TM

.

The channel is machined out of perspex.

17

Figure 14: Solid Edge 3D Channel Design

The mechanical drawing can be found in Appendix III Figure 6.

Channel Area Di�erence of the Two-section Channel

The last �gure shows a cylindrical, hollow channel on either ends of the channel with the internal, smaller

channel in the middle. The reason to increase the air speed in the internal channel was established in

the previous section. This is done by maintaining a large cross section in the outer channel, by changing

the diameter of the hollow cylinder. However, the change of diameter is limited by the maintenance of

laminar �ow inside the internal chamber. Laminar �ow is quanti�able with the Reynolds Number. The

Reynolds Number equation is applied to the internal chamber to assess the maximum possible air �ow

in the internal channel, assuming the air is incompressible.

Re =
V D

υ
(6)

where Re is the Reynolds number, V the mean �uid velocity, D the characteristic dimension, and υ the

kinematic viscosity. The characteristic dimension for a non-circular duct is calculated with D = 4A
P ,

where A is the cross sectional area of the duct and P the wetted perimeter (Therefore, D = 1.5mm).

Wetter perimeter of a rectangular duct as the one used in this design is 4 times the length of one side

(the channel is a square type duct). The equation is rearranged to calculate the maximum mean velocity

of air in the duct for Re = 2000. In �uid dynamics, it is a generally accepted fact that the �ow is laminar

for Re < 2300. However, leaving a safe margin, Vmax is calculated for Re = 2000.

Vmax =
υRe

D
=

1.8× 10−5m2s−1 × 2000

1.5× 10−3m
= 24ms−1

The considered maximum air �ow speed in a container is 5 ms−1. Therefore, this velocity should yield

an increased maximum velocity of 24 ms−1. Then, using continuity equation (Equation 4), the external

diameter that satis�es the above criteria can be calculated.

18

De =

√
D2

i Vi,max

Ve,max
= 3.29mm

where i and e means internal and external, respectively. The mechanical drawing of the channel in

Appendix III shows a diameter of 3.85 mm. This is actually 3.80 mm, due to manufacturing limitations

of the width of the drill bit. However, this is an acceptable diameter consistent with the above theory,

because raising the Reynolds number to 2300�above the safe margin (used in the calculation)�and

limiting the maximum external �ow velocity to 4.5 ms−1 (5 ms−1 was not tested in this project), gives

an external diameter of 3.71 mm, in the neighborhood of the actual diameter.

The above calculations are not directly applicable in this project as the air is compressible, and there is

an unknown factor to be assessed (Equation 5). However, the assumption that the air is incompressible

was used to arrive at an acceptable external diameter based on theory. Veri�cation of the above is not

within the scope of this project.

3.2.2 Digital Components Overview

The �nal circuit is depicted below in abstraction with all its inputs and outputs (except GND) for easy

reference.

Wheatstone
Bridge

Differential
Amplifier

Digital
Potentiometer

Digital
Switch

Telos U2
Connector

Telos U28
Connector

Voltage
Doubler

Bridge
Power

D1

D2

S3B

S2A

R_OP90

BUSBUS

R_FLOW
V_REF

RFL_3V

PWR

PWR

SCLK

DATA

Main Power
PWR

LOG1

LOG1

LOG1

LOG2S1A

S2A

D1

D2

PWR
PWR

S3B

Reference
Voltage RFL_3V

V_REF

PWR

2X_PWR

R_FLOW

CS

PWR

RFL_3V

SCLK

DATA

R_OP90

ADG1

ADG2

2X_PWR

S1A

RFL_3V

CS

W

Figure 15: Overall circuit �ow diagram with all inputs and outputs of the common bus

Digital Quad Switch - ADG734BRUZ This 20-pin digital device is in place for the 5 manual

jumpers (J2, J3, J5, J10, and J14) operated in the previous design.

19

Pin con�guration on ADG734BRUZ chip:�

�

�������
���

����
���

	
���	
���

Figure 16: Pin con�guration of ADG734 (left: showing manual jumpers, right: with original pin names)

Note ADG1 and ADG2 pins on the left. They are U28 (Figure 3.2.2) connector pins of the TelosB.

They are used for logic simpli�cation to reduce the number of pics required to automate the�previously

manual�system. The digital switching is easy to operate: the pics marked above as IN1 to IN4 are logic

inputs. These 4 dictate what switches are open and what are not. If the �rst switch is taken, for example,

when IN1 is '1' the switch is closed between D1 and S1A; when IN1 is '0' D1 and S1B are closed [7].

The following table lists out the equivalence of the digital and manual switches in the old and new designs.

Manual
Jumpers

Digital
Switches

Ref. Name Description

J2 D2 ↔ S2A S1 Connects the feedback loop from OP90
output to the base pin of the transistor in
the Wheatstone Bridge during �ow
measurement (Run Mode).

J3 GND ↔ S3B S2 Completes the circuit to light up the Green
LED in Balance Mode.

J5 D1 ↔ PWR S3 Powers up the Wheatstone Bridge with main
power (4 V) in Balance Mode.

J10 D1 ↔ S1A S4 Powers up the Wheatstone Bridge with 8V
(voltage doubler output) in Run Mode.

J14 Not used S5 Not used.

Table 2: Manual and Digital Switching Equivalence

Note: J14 was used in the previous circuit design to isolate the wheatstone bridge in compensation mode.

However, it is not required in the new design because compensation can be done without isolating the

digital potentiometer. it is shown here only to retain the equivalence.

Pin requirements reduction on U2 and U28 extensions on TelosB Applying logic simpli�cation

for the digital pin requirements of the application (Figure 3.2.2) for the three modes on which the system

operates. The following table deduces that three modes can easily be accessed by switching the ADG1.

ADG2 pin is not required for branch isolation is not required with the digital potentiometer.

20

Operation/state

Operation
Calibration (balance)

Compensation

S1 S2 S3 S4 S5

1 0 0 1 1
0 1 1 0 1
0 1 1 0 0

IN1 IN2 IN3 IN4

1 1 1 1
0 0 0 1
0 0 0 0

ADG1 ADG2

1 1
0 1
0 0

Table 3: Logic simpli�cation

TelosB Connectors Pin con�guration on TelosB extensions U2 and U28 can be seen below.

Pin description U2 pin number

V+ 1
Digipot_CS 3

Read signal, 3V 5
CLOCK 6

Read air �ow 7
DATA 8
V- 9

ReadOP90 10

Pin description U28 pin number

ADG1 1
ADG2 2

Table 4: Pin con�guration of U2 and U28 extensions

Pin con�guration:

Figure 17: Pin con�guration of TelosB extension U2 and U28

Digital Potentiometer - MAX5483 This is a 1024 tap 10 kΩ digital potentiometer with 10 Ω/step

resolution. The resistance range is accurate for the actual resistance of the internal resistor from 70 to

10070 Ω. The pic con�guration of the device is shown below.

21

Figure 18: MAX5483 Pin Con�guration (Top) and Command Decoding (Bottom)

D0 to D9 above are the 10 data bits, which can accommodate up to 1023 step values. C1 C0 are con�gured

to be either a write or a read command.

The device is SPI (Serial Peripheral Interface) enabled. Therefore, TelosB platform can be e�ectively

used with MAX5483, hence the reason for selection. It requires pin 3, 4, 5, and 6 to operate the SPI.

It is not possible to read the resistance value (denoted by L and W). For this application, reading the

resistance value is not required. Pin 6 is the SPI enable pin and is directly wired to the VDD. Pin 3

CS has to be HIGH when writing to the SPI with Pin 4 (clock pin) and 5 (data pin). After writing the

data to SPI, to latch the data to the internal memory of the chip, CS has to be turned LOW. The write

command is 24 bit long and needs a little tweak in TinyOS to program seamlessly. TinyOS SPI write on

TelosB can be done only 8 bits at a time. Therefore, the programming of TelosB contains 3 write cycles:

1. First command write cycle: line 18 3.2.2

2. First data write cycle: line 19

3. Second data write cycle: line 20

The code snippet of the component that provides the interface that achieves the above functionality is

given below:

22

'

&

$

%

1 module Dig i ta lPotent iometerC

2 {

3 prov ide s

4 {

5 i n t e r f a c e D ig i t a lPotent i omete r ;

6 }

7 uses

8 {

9 i n t e r f a c e SpiByte as SPIbyte ;

10 i n t e r f a c e GeneralIO as DigipotPinOnOff ;

11 }

12 }

13 implementation

14 {

15 command void Dig i ta lPotent i omete r . WriteDigipot (uint16_t cmd , uint16_t data)

16 {

17 c a l l DigipotPinOnOff . c l r () ;

18 c a l l SPIbyte . wr i t e ((uint8_t)cmd) ;

19 c a l l SPIbyte . wr i t e ((uint8_t) ((data & 0x3FC) >> 2)) ;

20 c a l l SPIbyte . wr i t e ((uint8_t) ((data & 0x3) << 6)) ;

21 c a l l DigipotPinOnOff . s e t () ;

22 }

23 }

Each write cycle requires no time delay in between; however, after latching the written data to its memory,

delay timer of 300 ms is provided in the main code. This is to ensure enough time to radio the data up

to that point and to enable the user to see the progress. But, this feature is not required if visualization

of the Balance Mode progress is not a primary requirement. Therefore, the timer can be reduced up to

20 ms (radio requires approx. 10 ms) and was tested separately and successfully.

The variable resistance is calculated by Equation 7 [8].

RWL (D) =
D

1023
RW−L +RZ (7)

where RWL (D) denotes the resistance at step value of D, RW−L the total resistance, and RZ the o�set

at step value 0.

MAX1683 and MAX4462H The details of these two chips can be found in [1].

3.2.3 Wheatstone Bridge

The circuit has an unequal symmetry to increase the step resolution when changing the digital poten-

tiometer. In reference to Figure 3.1, left top branch of the bridge is R1 and left right the R2. The bottom

left branch consists of R4, R5, and RW−L (the variable digital potentiometer resistor); bottom right is

connected to the heater of the �ow sensor.

In order to discuss the step resolution, the voltage di�erence of pin 3 and pin 2 of the OP90 needs

to be analyzed, de�ned as V ∆. The nominal �ow sensor resistance measured at room temperature

is approximately 795 Ω for the sensor used in this application; this varies for di�erent sensors. The

multiplication factor of the bridge is de�ned as R1/R2. What is required is to see how V ∆ behaves near

the balance point, i.e. when OP90 output is near zero, with one 10 Ω step value increase or decrease of

the digital potentiometer in the bottom left branch. Reason for doing so is due to the high open-loop gain

of the ampli�er [9]. Therefore, the the behavior of V ∆ at balance point is of high importance in Balance

23

Mode. Assuming m for the multiplication factor and RR the total resistance of the right branches at

room temperature, mV value of V ∆ can be de�ned as follows (bridge is powered with a 4V battery).

V∆ = 4R1

(
1

mRR
− 1

mRR + 10

)
103 (8)

A test was conducted to determine the ampli�cation of the OP90, and at balance for a 10 Ω step increase,

the output of the OP90 stood at approx. 700 mV. That indicates a gain of approx. 1200. Using this

value, the following table can be obtained for single 10 Ω step increase at balance point for di�erent

multiplication factors.

m 10 20 40 80 160
V ∆ (mV) 2.3833 0.5961 0.1490 0.0373 0.0093

Ampli�ed Output (V)/step 2,86 0,72 0,18 0,04 0,01

Table 5: V ∆ for di�erent multiplication factors

It is evident from the above table that higher the multiplication factor the better the resolution. Therefore,

the detection of the balance point is more precise if a higher multiplication factor is chosen. However,

higher multiplication factors lead to undesired noise at the OP90 output. This complicates the detection

process and requires additional circuitry to remove the noise. Lower multiplication factors yield higher

ampli�ed outputs, yet again leading up to di�culty in detection due to very large ampli�cation outputs.

Therefore, a multiplication factor of 20 was selected for its reasonable ampli�cation output and low noise

characteristics.

3.2.4 Printed Circuit Board (PCB)

The PCB, shown below, is planned to be miniaturized. It is double layered and the silkscreen makes

it easy to identify the components described in the previous chapter. Components are soldered only on

top. PCB at this stage is expected to undergo further tests and may accommodate other components if

further improvements are made.

Figure 19: PCB (left: top and bottom views superimposed, right: actual circuit)

3.3 Automated Balance and Compensation Technique

The Digital Potentiometer - MAX5483 section in Chapter 3.2 explains the write cycle of the digital

potentiometer, which is the heart of the balance and compensation process. The target is to balance the

bridge so that the bottom left branch of the bridge (see Figure 3.1) is equal to the bottom right branch,

24

the heater; thereafter, an additional resistance ∆R is added to the digital potentiometer in Compensation

Mode.

Bridge Balance Technique

The actual resistance of the heater at a given temperature is unknown. Therefore, it has to be deduced.

The method of deduction is called the balance technique. The balance is achieved if Criteria 2 is satis�ed.

It was earlier introduced in Chapter 3.1 Figure 3.1. That criteria in detail is as depicted in the code

snippet below as a task8:'

&

$

%

1 task void Cal ib ra teBr idge ()

2 {

3 i f (((1300 <= last_OP90) && (last_OP90 <= 1500))

4 | | (swingCounter >= SWING_THRESHOLD))

5 {

6 las t_balance = dataSPI ;

7 las t_ca l ibrated_temperature = last_temperature ;

8 mode = MODE_COMPENSATION;

9 SetMode () ;

10 c a l l Leds . l ed1Of f () ;

11 c a l l Leds . l ed2Of f () ;

12 post AddDeltaR () ;

13 }

14 else

15 {

16 i f (last_OP90 > 1500)

17 {

18 highRange++;

19 i f ((lowRange != 0) && (highRange != 0))

20 {

21 swingCounter++;

22 }

23 c a l l Leds . l ed1Toggle () ;

24 c a l l D ig i t a lPotent i omete r . WriteDigipot (CMD, −−dataSPI) ;
25 c a l l SPIWriteTimer . startOneShot (300) ;

26 c a l l ResourceSPI0 . r e l e a s e () ;

27 }

28 else

29 {

30 lowRange++;

31 i f ((lowRange != 0) && (highRange != 0))

32 {

33 swingCounter++;

34 }

35 c a l l Leds . l ed2Toggle () ;

36 c a l l D ig i t a lPotent i omete r . WriteDigipot (CMD, ++dataSPI) ;

37 c a l l SPIWriteTimer . startOneShot (300) ;

38 c a l l ResourceSPI0 . r e l e a s e () ;

39 }

40 }

41 s i g n a l FlowControl . Mon i torCa l ibrat ionProces s () ;

42 }

Note: Reference Appendix II and CD for the full documentation.

It can be seen on line 3 a variable called last_OP90: this is the output of the voltage divider connected

to OP90 output (R_OP90 in Figure 3.1). It is read by pin 10 of the U2 extension of TelosB; therefore,

8In TinyOS task is a background process that can be posted.

25

this 12-bit AD conversion results in a value between 0 - 4095. The tests conducted with a manual,

precise potentiometer a�rmed that the balance point falls between 1300 and 1500 (i.e. balance region).

However, as per the sensitivity analysis in Chapter 3.2.3, it is evident that the balance point can easily

be missed dependent on the starting resistance value of the �ow sensor. This in turn is dependent on

the starting ambient temperature. Therefore, a single criteria is not su�cient, hence the second criteria

Swing Counter.

Swing counter identi�es two regions: low range for OP90 values less than 1300 and high range for values

greater than 1500. Therefore, near the balance point, if the balance region is overshot or undershot, one of

the low or high regions will be marked as arrived�swingCounter variable is incremented by one. Then on

the next run�with the digital potentiometer increased or decreased accordingly�if the last_OP90 value

overshoots the balance region again and reach the other region, swingCounter is incremented again.

In general, from the tests conducted, the balance region is hardly reached when there is an ongoing

swing. Therefore, a swing threshold of 5 (SWING_THRESHOLD) is declared; upon reaching 5 the

bridge is declared balanced. The resulting error is marginal, a maximum of one step value of the digital

potentiometer.

Aforesaid balance process has bottlenecks at reading the OP90 value and sending the updated variable

data over the radio for observation and monitoring purposes. The total time taken for the balance process

depends on how far the start value (START_CALIBRATE_VALUE, a constant provided in the header

�le SensingData.h) is from the actual resistance of the heater. In general, with one loop of the above

code snippet taking less than 30ms, most of the balance processes completes within 0.5 s. In general, it

is safe to limit the completion time of the balance process to less than 1 s.

Temperature Compensation Technique

Subsequent to the balance process, compensation is added. This is to make sure the �ow sensor is sampled

on Constant Temperature Basis. It is important to note the two code snippets�in-module function and

a task�shown below:

26

'

&

$

%

1 uint16_t GetdR ()

2 {

3 i f (la s t_ca l ibrated_temperature >= 0x0F78)

4 return 11 ;

5 else i f (la s t_ca l ibrated_temperature >= 0x1040)

6 return 10 ;

7 else i f (la s t_ca l ibrated_temperature >= 0x1234)

8 return 9 ;

9 else i f (la s t_ca l ibrated_temperature >= 0x13C4)

10 return 8 ;

11 else i f (la s t_ca l ibrated_temperature >= 0x15B8)

12 return 7 ;

13 else i f (la s t_ca l ibrated_temperature >= 0x17AC)

14 return 6 ;

15 else i f (la s t_ca l ibrated_temperature >= 0x193C)

16 return 5 ;

17 else i f ((la s t_ca l ibrated_temperature >= 0x1B30)

18 && (las t_ca l ibrated_temperature <= 0x1C5C))

19 return 4 ;

20 else

21 return 0x0FFF ;

22 }

23

24

25 task void AddDeltaR ()

26 {

27 dR = GetdR () ;

28 i f (dR != 0x0FFF)

29 {

30 dataSPI += dR ∗ (BRANCH_FACTOR / DIGIPOT_STEP) ;

31 c a l l D ig i t a lPotent i omete r . WriteDigipot (CMD, dataSPI) ;

32 c a l l ResourceSPI0 . r e l e a s e () ;

33 c a l l CompensationDelayTimer . startOneShot (500) ;

34 // s i g n a l FlowControl . Moni torCal ibrat ionProcess () ;

35 }

36 else

37 repor t_error () ;

38 }

It can be seen that the ∆R (dR in the top code snippet) is not calculated as it should shown below.

∆R introduced above is as follows:

ΔR = TCRH .ΔT.RH (9)

ΔR Required rise of resistance (Ω)

TCRH Temperature Coe�cient of Resistance (1/K)

ΔT Temperature di�erence (25K)

RH Heater resistance at starting temperature (Ω)

The reason is to avoid �oating point calculations, simplicity, and inability of the potentiometer to add

decimal-point ∆R values (e.g. 7.4 Ω). The compensation values must always be multiplications of 10s

for the minimum step value of the potentiometer is 10 Ω. Therefore, to solve this problem, calculations

using the above equation are done separately and dR is deduced based on the last recorded temperature,

at which the Balance Mode was reached (Criteria 1 in Chapter 3.1). If it is on compulsory Balance Mode

at boot-up, the temperature is measured before going in to Balance Mode. The table below shows the

results of latter calculation. This calculation has to be performed for each �ow sensor individually. The

27

dR values are rounded to nearest unit integers. Therefore, there are temperature regions with the same

dR value, which is perfectly substantial for the actual change of heater resistance over few degrees Celsius

is low.

Temperature

Region

Temperature
(oC)

Temperature
(0x)

dR
(Ω)

dR

(rounded)
(Ω)

d 16 15B8 7.4 7
d 17 161C 7.2 7
d 18 1680 6.9 7
d 19 16E4 6.7 7
d 20 1748 6.5 7
c 21 17AC 6.3 6
c 22 1810 6.1 6
c 23 1874 5.9 6
c 24 18D8 5.6 6
b 25 193B 5.4 5
b 26 199F 5.2 5
b 27 1A03 5 5
b 28 1A67 4.8 5
b 29 1ACB 4.6 5
a 30 1B2F 4.3 4
a 31 1B93 4.1 4
a 32 1BF7 3.9 4
a 33 1C5B 3.7 4

Table 6: Temperature Compensation dR Calculation

The above table only shows 4 temperature regions for which the calibration tests were conducted. Test-

ing the �ow sensor in di�erent temperature regions is dependent on the availability of such ambient

temperature regions, hence its high dependence on weather.

The dR value deduced above has to be further compensated for the bridge multiplication factor. Increase

of dR amount on the left branch is not equivalent to increase of dR on the heater side. The reason

is the unequal left and right branches of the bridge. Therefore, dR needs to be multiplied by a factor

determined by BRANCH FACTOR
DIGIPOT STEP (i.e. 2).

3.4 Software Design Implementation

Three separate software applications were used for the project.

1. TelosB control and data collection application

This is by far the most important application. This program governs the entire embedded system

including all sensors and the data communication with the host PC applications.

2. GUI application

There are di�erent forms of this application9: one for displaying data for the calibrated �ow sensor

and the other to record data during the calibration testing phase. LabVIEW was used as the

programming language. The main application sorts the error-free packets received by the base-

station and displays the data graphically. The test application is used for calibration data display

and record. It records the data and writes them to text �les to be analyzed.

9The core application module was written by Dirk Hentschel of IMSAS for a di�erent application. The code is reused
for this app with many changes.

28

3. Calibration data analysis application

The data text �les recorded by the LabVIEW test application is read by a Matlab program, and

some graphs (see Chapter 4) are produced with the raw data. Then some manual inspection and

calculations are performed, after which those data is fed again to another Matlab application to

yield further more graphs and to perform curve �tting in order to obtain the relations indicated by

Equation 1 (Chapter 2.1).

TelosB control and data collection application is detailed in this chapter. Other two applications are

briefed in Chapter 4 where is it more pertinent. Most important and relevant code and supplementary

information are provided in the appendices, and the rest of the data is provided with the CD.

3.4.1 TelosB Application

The application programmed in to TelosB is two-fold: one for the sampling of the calibrated �ow sensor,

the other to sample test data during the calibration of the sensor. This section discusses the general

application for sampling the calibrated sensor. The other application�with minor changes to the latter�

is discussed brie�y in Chapter 4.

The programming is done with NesC language (Appendix I) on TinyOS as the operating system. The

code is compiled along with TinyOS together as one program and uploaded in to TelosB. The reason

for the usage of NesC is its high e�ciency for WSN related applications. The program uses integer

calculations only. The TelosB application is explained below in detail with code snippets and �owcharts,

except for balancing and compensation processes which were detailed in the earlier sections.

The whole program code can be divided mainly in to 3 parts:

1. Main con�guration (ControllerAppC.nc)

2. Main module (ControllerC.nc); Sub modules (FlowSensorControlC.nc, DigitalPotentiometerC.nc)

3. Interfaces (SensorControl.nc, FlowControl.nc. DigitalPotentiometer.nc)

Refer to Appendix II Table 6 for the full �le list and Appendix II section TelosB Program Code for their

program code.

ControllerAppC contains all the wiring required to connect all interfaces and user de�ned modules to the

system modules used in the program. The main module houses the booted event10. Booted event is the

�rst event signaled after boot-up of TelosB, and it initiates the program with some system related pa-

rameter initialization. Program execution is shifted from one �le to another according to the ControllerC

�le.

The entire program can be described in two loops: �rst loop compulsorily balances the bridge and

compensates for target temperature; the second loop is the normal program execution to sample the �ow

and other sensors. These two loops are explained below with �owcharts and noteworthy code snippets.

First Loop

Note: T, H, B, and F stands for Temperature, Humidity, Battery Voltage, and Flow.

10event is a TinyOS speci�c type word.

29

START
Controller and System

Paramerter Init
Radio Packet

Init

Start Measurement
Timer

Measure T. H, B

Measurement
Timer Fired

Yes

Store
H and B

T within range

T readDone

H, B
readDone

Never Accessed
In

First Loop
Yes

Set
Balance Mode

No

Balance and
Compensate

Signal
System Restart

Set
Run Mode

Figure 20: First Execution Loop of TelosB Program

After boot-up and system parameter initialization, radio packet header is also initiated; afterwards, radio

send frequency is set. In this application, radio sends the collected data every second. Measurement

Timer is then called to keep track of how long the measurements take, which is required to set the

Send Timer correctly to allow enough time for the sensors to read data and ensure constant data relay

frequency. Subsequent to �ring of the measurement timer, the �rst measurements of T, H, and taken.

The program then signals the readDone events once the measuring is complete, and the data is saved.

However, inside the T readDone event, measured temperature is checked to see if within a predetermined

range (Criteria 1, Chapter 3.1). In the �rst loop, the variable last_calibrated_temperature is set to

0xFF9B (i.e. 0xFFFF - 0x64) to force the false condition of the if loop. The code snippet of the T

readDone event and MeasuremetTimer.�red event is given below.

30

'

&

$

%

1 event void ReadTemp . readDone (error_t r e su l t , uint16_t data)

2 {

3 i f (r e s u l t != SUCCESS)

4 {

5 data = 0 x f f f f ;

6 r epor t_error () ;

7 // i f error keep the o ld va lue

8 }

9 else

10 {

11 i f (((las t_ca l ibrated_temperature − 0x64) < data)

12 && (data < (las t_ca l ibrated_temperature + 0x64)))

13 {

14 last_temperature = data ;

15 post DelayFlowMeasurement () ;

16 }

17 else

18 {

19 last_temperature = data ;

20 s i g n a l SensorContro l . SystemReca l ibrat ion () ;

21 }

22 }

23 }

24

25

26 event void MeasurementTimer . f i r e d ()

27 {

28 i f (measurementMode)

29 {

30 c a l l SensorContro l . OneMeasurement () ;

31 measurementTimeStamp = c a l l MeasurementTimer . getNow () ;

32 startSendTimer () ;

33 }

34 else

35 {

36 c a l l SensorContro l . PrepareBuf fe r (measurementTimeStamp) ;

37 startMeasurementTimer () ;

38 }

39 }

This forces the system to enter Balance Mode; therefore, the Balance Mode is set and the bridge is

balanced and compensated. Subsequently, the Run Mode is set and the measurement timer is restarted.

Within this �rst loop, after the balancing is completed, last_calibrated_temperature variable is assigned

with the measured temperature value. Therefore, �rst loop concludes here and then starts the normal

operation of sampling the �ow sensor.

Second Loop

When the measurement timer is �red for the second time (Note: this particular timer is used for two

purposes.), it can go in to two sub-modes (see code snippet above): start measurements mode and radio

measurements mode. On the �rst following the �rst loop described above, the system samples all sensors

once more. In the T readDone event�as seen in the code snippet above��ow delay timer is called. This

is to ensure 30 ms long time period for �ow measurement, from setting the �ow enable pin HIGH (pin 7,

U2 of TelosB) to setting the same pin LOW after the measurement is complete (in �ow readDone event).

This �ow delay timer is shown with a dashed line in the �gure below. Program execution does not wait

for the readDone events and proceeds to the next line in the program execution stack: Start Send Timer.

This function (not a Timer) calls a measurement timer of 350 ms. This is to allow enough time for the

temperature and humidity sensors to take measurements; on average they take approx. 250 - 300 ms

31

cumulatively. Since there are no execution tasks left on the stack thereafter, all sampling of sensors are

completed before the called timer is �red. After its �ring, since the �ag that determines the sub-mode is

negated in the previous run, it goes in to radio mode. This prompts preparation of the radio bu�er and

sending of the measurements data and some other data (see lines 176 - 208 in FlowSensorControl.nc in

Appendix II).

Start
Measurement

Timer

Measure
T, H, B

Measurement
Timer Fired

Store
T, H, B, F

Measure
OR

Radio

Yes

Radio
Measurements

Start
Send Timer

Measure

Radio

Measure
F

Post
F measure

F
readDone

T, H, B
readDone

Flow Measure
Timer Fired

Yes

Figure 21: Second Execution Loop of TelosB program

The second loop is in�nitely reiterated as long as Criteria 1 is met. If not, system balances and compen-

sates autonomously before taking any more �ow samples.

32

4 TESTING

The �ow sensor cannot be used for absolute measurement of air �ow because it is uncalibrated. Calibration

essentially�in this case�means one-to-one mapping of voltage di�erence of the two thermopiles and air

�ow speed. This relation was introduced and mathematically represented in Equation 1. The voltage

di�erence is measured with the AD converter of the TelosB. Therefore, the latter equation is rewritten

with the measured AD conversion value, simply named F . Note here that the used parameter for �ow is

the average �ow reading. This is further explained in Chapter 4.3.

F = f i (ν̄) (10)

This chapter explains how relation f is deduced, but the actual relation is given in the next chapter.

Therefore, testing adopted a simple technique to pass a stream of air over the sensor area and measure

the voltage di�erence, that too under di�erent temperature regions explained in the previous chapter.

Note the 5 requirements listed in Chapter 2.5.

4.1 Testbed

At the time of testing, the testbed contained prototype circuit board, in every way similar to the �nal

circuit PCB shown in this report. The testbed contains the toy car, �ow sensor, prototype circuit boards,

TelosB sensor board, 4 V battery, protective box for the boards, ON/OFF switch, and a USB cable to

program the TelosB mote. Following �gure illustrates the testbed.

Figure 22: Testbed

4.2 Test Methodology

Air �ow speeds Calibration of the �ow sensor for this application is limited in scope. The reason

being the air �ow speeds present in an actual refrigerated container transporting goods are between 0

and 5 m/s. Therefore, some means of varying the air �ow speed was required. This came in the form of a

radio-controlled toy car. Instead of streaming the air at the sensor attached to a immovable stable base,

sensor is moved at di�erent speeds in stagnant air which remains at 0 m/s. The car features a speed

controller, wheel alignment, approx. 20 m (indoor) radio range, an electric motor, and a 7.2 V heavy

duty, rechargeable battery. The car is capable of achieving a maximum speed of 4.5 m/s, but maintaining

lower speeds around 1 m/s and less proved to be di�cult. Maintaining the mid-speeds, on the other hand,

is easy. But, it is not possible to repeat the same speed twice one after the other; however, such precise

repetitions are not required to calibrate the sensor. What is required is to produce di�erent speeds of

the said range as much as possible, not speci�cally in an ascending or descending order.

33

Ambient temperature The other most important factor in testing is the ambient temperature under

which the testing is performed. The testing was performed indoors. Table 3.3 lists 4 temperature regions.

During the period the testing was carried out11, it was not possible to �nd temperatures less than 16oC

(indoor).

Laminar air �ow If the sensor is calibrated under laminar �ow, it would result in the best calibration

relation achievable. However, it is di�cult to achieve laminar �ow due to a variety of reasons: internal

channel turbulence, manufacturing errors in the channel, drafts in test sites, car vibrations, car handling

errors, etc. Therefore, the best possible conditions were selected under testing. Testing was always carried

out indoors, after making sure that there are no drafts across and along the test trip at car-height level.

Therefore, as can be seen in previous section, the channel end meets the air at 0 m/s. That avoids certain

amount of turbulence, which otherwise would be present. Channel design is also carefully designed to

make sure the best possible laminar �ow. It is detailed in Chapter 3.2.1.

Test Methodology

Testing requires two persons: one to operate the the radio controlled car; and, another to record the

time. The �gure below illustrates the test setup. Di�erent test locations were used to perform the tests.

The choice of test location depended on the available ambient temperature, drafts, and a straight stretch

of level ground.

D

Start/
End

Start/
End A B

dd

LaBVIEW application

Base-station

Operator

Observer

Figure 23: Test Strip

The test equipment setup is organized as follows: The car houses the electronics and the TelosB mote.

It has two antennas: one for the car remote and the other the antenna of the TelosB mote. Operator

controls the car, and it is run back and fourth between the 3 Start/End signs. The observer records the

time the car takes from A to B and B to A depending on the driving direction. The car continuously

transmits the �ow measurements to the base-station. The base-station is connected to the laptop, which

runs a LabVIEW Test program. It records all the raw data received, including some other data, such as

system time, last balance step of the digital potentiometer (number of step values required to balance

the bridge), compensation value (dR), OP90 divider output, etc. Note two di�erent sets of two antennas

signifying the di�erence between the mote-to-mote communication and the car remote.

11During the month from 5.7.2010 to 5.8.2010.

34

The stretch of level ground was set at 12 m (i.e. D, the distance between A and B. Some tests had 15 m

distance). The distance d, between Start/End and A/B, is the acceleration region; it is about 1.5 - 2 m in

length. The car starts at Start/End and accelerates for a distance of d. This, however, is hypothetically

correct. Because the car is controlled manually, the acceleration region may fall short or longer. However,

test observation and experience proved d to be a reasonable distance. But, when trying high speeds (>

3.5 m/s), the distance d is doubled to allow enough time to achieve the desired speed.

The operator of the car remote maintains the speed at A/B constant for the full distance of D. The

observer records the time taken for the car to travel from A to B or A to B. A to B or B to A is de�ned

as one test run. The sensor is calibrated only on one direction of the channel. It is, of course, possible to

measure the �ow by rotating the channel horizontally by 180 degrees. However, due to time restrictions,

calibration is only done for one direction. The battery of the car lasts for up to 45 minutes. Therefore,

as many tests as possible were conducted within this time duration.

The car continuously samples the �ow sensor, at one measurement each 100 ms, and radios immediately.

Therefore, the send (radio) frequency is equal to the sampling frequency. At D = 15 m, ν = 3 m/s, for

example, the program samples the �ow sensor 50 times. For lower speeds it is higher, and for higher

speeds the count is lower.

The base-station receives the data sent by the TelosB onboard the car, and the LabVIEW Test program

(with minor changes to the application stated in 3.4) writes the received data to a text �le (syntax:

fm_<date>_test<number>.txt). The text �le data is then read with a Matlab program and undergoes

some manual manipulation, which is discussed in the next section. The manipulated is written on to

another text �le. This text �le is read by another Matlab application and a graph is produced between

the Air Flow Speed and Flow Output (ADC reading).

4.3 Test Results Extraction and Manipulation

As explained the previous section, the data transmitted by the car is recorded by the base-station and

written to disk by the LabVIEW Test application. Altogether, 9 complete tests were completed. The text

�les of raw data are included in the CD. In total, 116,200 samples were received and recorded, however

radio packet counter of the TelosB program recorded a much higher packet transmission number�the

di�erence being the lost packets, amounted to about 15%.

The following code snippet shows the Matlab code (DataAnalyzer.m) that reads the raw data �le. Read-

Measurements function is simply the Matlab textread function. It prompts for user input to read a

desired �le, and it categorizes and produces di�erent matrices belonging to di�erent measurements, e.g.

temperature, �ow, heater balance, etc. Eventually, it produces a graph between Flow Value and Received

Packet Number. Flow Values are extracted from FLOW matrix, and the Received Packet Number here

is the same as FLOW matrix index.'

&

$

%

f i l ename = input (' Enter f i l e name : ' , ' s ') ;

[DATE SYSTIME MOTEID, TIME, TEMPERATURE, SNUMBER, OP90 , . . .

. . .MODE, FLOW, HEATER] = ReadMeasurements (f i l ename) ;

plot (FLOW, ' r ') ;

xlabel (' Received packet number ' , ' FontSize ' ,14) ;

ylabel (' Flow Value ' , ' FontSize ' ,14) ;

An example�test 7�of such a graph is shown below for analysis purposes.

35

Figure 24: Air Flow Speed vs. Flow (ADC value), Temperature Region 'c'

Each peak shown on the graph belongs to an individual test run, from which the average �ow speed

is calculated. The Xs shown are the rejected or refused test runs due to various reasons: presence of

drafts, high speed variations during test run, and erroneous timing. The downward peaks are also shown.

These are when the system was manually reset for re-calibration (re-balancing and re-compensation).

The temperature is taken few times during the entire experiment with a thermometer. There are no

temperature measurements taken by the TelosB during the test run except in the start, where it goes in

to a compulsory balance and compensation process.

The Main TelosB Application is slightly changed to adapt to a test program. There is a User Button on

TelosB, which the application uses to start the application and for any other re-calibrations thereafter.

See the code snippet of ControllerC.nc, changed as follows, for this purpose. Only the additional events,

di�erent from the main TelosB program, are shown. Notice line 5 which throws the event in line 11 when

the User Button is pressed. This sets the Balance Mode, and it eventually leads to compensation, too.'

&

$

%

1 event void Boot . booted ()

2 {

3 In itSystem () ;

4 In i tCont ro l l e rPa ramete r s () ;

5 c a l l Not i fy . enable () ;

6 c a l l SensorContro l . S tar tSensorContro l () ;

7 }

8 .

9 .

10 .

11 event void Not i fy . n o t i f y (button_state_t s t a t e)

12 {

13 i f (s t a t e == BUTTON_PRESSED)

14 {

15 c a l l MeasurementTimer . stop () ;

16 c a l l FlowControl . SetCal ibrat ionMode () ;

17 c a l l FlowControl . Beg inCa l ib rat ion () ;

18 }

19 else i f (s t a t e == BUTTON_RELEASED)

20 {

21 // do nothing

22 }

23 }

The calculation of the average speed is a manual, labor-intensive process. Average speed is calculated by

36

visual inspection; to explain this visual inspection process it requires to zoom in to one peak (test run 18

of Figure 4.3) shown in the above �gure.

Figure 25: An individual test run

Time taken to complete the test run for the above curve (t18,AB) 5.75 s; average speed ν18 of the car 2.1

m/s.

The acceleration region is clearly visible at the beginning of the curve. Though with ups and downs, the

curve continues to maintain an average �ow value (F) till the end. The sharp drop at the end of the

curve is due to the operator engaging breaks at, say, B (see Figure 4.2). Therefore, the sharp drop (B)

clearly marks the end of test run; now the beginning of the curve at which the timing starts has to be

�gured out. The distance d is approximately 1.5 - 2 m; therefore, 15 to 20 measurements are recorded

during this time. By visual inspection, counting 15 - 20 measurements along the X-axis, it is possible

to note the beginning of timing (A). Thereafter, using ginput Matlab tool, A and B are marked and F

is calculated. In the above �gure F is 1190. An obvious error is shown in the graph; that is the slight

acceleration still present after point A, when timing starts. This is an unavoidable error depending on

maintaining constant speed throughout the test run. Therefore, the process is susceptible to unavoidable

human error. A new method by which human errors can be avoided is presented in the next section

(Chapter 4.4) as a solution.

The average speeds of each test run is recorded this way and written to another text �le using the following

Matlab code snippet:�
�

�
[x , y] = ginput (2) ;

f p r i n t f (f i d , '%5.1 f \n ' , mean(FLOW(c e i l (x (1)) : f l o o r (x (2))))

These command lines are repeated for each test run. �d refers to the �le ID of the text �le the data is

written to. x(1) and x(2) are the indexes of FLOW matrix (where �ow values are read in to) refer to A

and B of the particular test run, respectively. The index values of the FLOW matrix must be integers;

therefore, ceil and �oor functions are used.

The text �le produced is named, for example, st_<date>_test<number>_<temp region>.txt. This

enables the next Matlab program (See Appendix II Matlab Program) to plot the Average Speed vs.

Average Flow for the tested temperature region�c, in this case.

The described process is repeated for all tests, and the aforementioned Matlab program plots all data in

one graph.

37

Curve Fitting and Error Analysis

The visual inspection of the curves obtained points in the direction of non-linearity. Therefore, a second

order polynomial�for a better �t�is considered for the relation f i in Equation 10.12

f (νi) = a2ν
2
i + a1νi + a0 (11)

where a0, a1, a2 are the coe�cients of the polynomial, and f (νi) the predicted �ow value. Fi values are

the actual measured, average �ow values. The calculation of these coe�cients are done for temperature

zones a, b, c, and d. Curve �tting uses the Least Squares method, which minimizes the error of the

proposed curve with respect to the coe�cients.

The error of the curve can be written down as follows:

error =
n∑

i=1

e2
i =

n∑
i=1

(Fi − f (νi))
2

=
n∑

i=1

(
Fi −

(
a2ν

2
i + a1νi + a0

))2
(12)

where n is the number of data points for a particular temperature zone. Now taking partial derivatives

of the error with respect to the coe�cients to nullify the error (i.e. error = 0)

∂error

∂a2
= −2

n∑
i=1

ν2
(
Fi −

(
a2ν

2
i + a1νi + a0

))
= 0 =⇒ a2

∑
ν4
i + a1

∑
ν3
i + a0

∑
ν2
i =

∑
ν2
i Fi

∂error

∂a1
= −2

n∑
i=1

ν
(
Fi −

(
a2ν

2
i + a1νi + a0

))
= 0 =⇒ a2

∑
ν3
i + a1

∑
ν2
i + a0

∑
νi =

∑
νiFi

∂error

∂a0
= −2

n∑
i=1

(
Fi −

(
a2ν

2
i + a1νi + a0

))
= 0 =⇒ a2

∑
ν2
i + a1

∑
νi + a0n =

∑
Fi

Now the above equations are solved for a0, a1, a2 in matrix form.

∑
ν4
i

∑
ν3
i

∑
ν2
i∑

ν3
i

∑
ν2
i

∑
νi∑

ν2
i

∑
ν1
i n

 a2

a1

a0

 =

∑
ν2
i Fi∑
νiFi∑
Fi

 =⇒ V A = F =⇒ A = V −1F (13)

Therefore, A can be solved, and with Equation 12 error can be calculated. Matlab provides useful

functions such as poly�t and polyval for the calculation of latter. A manual calculation using the above

equations and the Matlab functions yielded the same results. Therefore, for the analysis of curve �tting

in the next chapter those Matlab functions are used[10].

4.4 Proposal for an Advanced Testbed

The calibration test methodology conducted on the thermal �ow sensor presented several errors, mainly

human errors which are avoidable. Therefore, with the experience obtained from the testing described

in this report, a proposal for a better testbed is proposed for future development. It takes in to account

the following error-prone aspects and provides solutions.

12 For simplicity, F and ν is considered here without the average sign.

38

1. Vibration reduction of the car.

2. Guarantee constant speed for the entire duration of the test run between A and B (i.e. Timing

limits).

3. Automate timing without human intervention.

A toy train system�with manually installed automatic timers�on guide rails is proposed as the moving

unit in place of the car used. This solution can be categorized in to several sections based on the following:

1. Track type�straight or circular

Straight track type would be much similar to the tests conducted in this project. But, it requires

the train to stop at either end of the track and restart the next test run in opposite direction.

Whether it is done automatically or not, it is unnecessary additional work.

A circular guide rail makes the latter task unnecessary. It enables the toy train to circle the track

at di�erent speeds without stopping till the end of the experiment. It is a much faster means of

sampling the �ow sensor at varying speeds.

2. Speed control�remote controlled or TelosB-controlled

The same method of using a remote controlled car can be used with the straight track type (with

a toy train, but not a car). The speed can be measured by installing a optical sensor onboard the

train and two light sources at A and B.

It is possible get more creative with the circular method: a full self-contained system can be

developed with speed control, detection, timing, and �ow measurement�all within one system.

3. Timing

For the straight track type, timers can be activated when the light sensor is triggered (by the light

sources). This time duration can be measured without a problem by TelosB timers.

For the circular track type, along with the speed control method used for the train, only a speed

con�rmation method is required. This can be achieved with an onboard optical sensor and only

one light source.

It is clear from above that a train on a circular guide rail is much an e�cient system that a straight

track system to simulate air �ow speeds. The following model �gure attempts to model this hypothetical

testbed.

A
Tangential
Direction

Train

Guide Rail

Light
Source

Flow Sensor

Old Circuit

Power Amplifier
Circuit

TelosB

Optical Sensor
Single Power

Unit

Figure 26: Proposed testbed

The noticeable changes to the circuitry of the previous system are the optical sensor and a power ampli�er:

39

1. The optical sensor senses the light source each time the train completes one circle. This enables the

TelosB to activate one of its timers and calculate the time taken per circle; thereby, it is possible

to deduce the speed as the circumference of the guide rail can be precisely measured.

2. Power ampli�er is to setup a speed control system for the DC motor of the train. PWM is a

more e�cient way of controlling speed of a DC motor. However, PWM implementation is quite

straightforward in TelosB platform. But, by simply using the DAC, it is possible to vary the voltage

of a pin on one of the extension slots of the TelosB. Therefore, using a non-inverting power ampli�er

circuit, the input voltage to the DC motor can be changed and�most importantly�kept constant

for a given period of time.

The placement of the �ow sensor also holds high importance. Note the point A of the above �gure,

located on the guide rail. The opening end of the sensor channel has to coincide with this point and the

alignment of the channel length has to be along the tangential direction marked at point A. To avoid any

turbulence caused by the train and its onboard equipment, the �ow sensor must be mounted few inches

on top of the train.

Another important detail of this system is that the �ow samples can be saved in to the internal Flash Mem-

ory of the TelosB. Therefore, radio complications�such as missing packets and delays�can be avoided.

The data can be retrieved later through a �ash download program using a USB cable. Considering all

of above, a small algorithm is presented for better understanding. Naturally, any real implementation of

this system will result in a more advanced program, especially because this is a self-contained program.'

&

$

%

//Proposed a lgor i thm for an advanced t e s t b e d

START MAIN

I n i t i a t e system

Measure temperature

Balance and Compensate

START do while (Loop Timer <= 20 minutes) (say)

Loop t imer (T)

Set DC motor speed OR Inc r ea s e Speed

// based on mu l t i p l e s o f i n t e r r up t counter

Set DAC to lowest va lue OR Increment

Wait for Light Sensor i n t e r r up t

i n t e r r up t counter++

Get i n t e r r up t time (t)

Get durat ion (delta_t)

Set RUN mode for f l ow measurements

i f (not s t a r t ed)

Sta r t f low measurements

// Measure temperature every 5 minutes (say)

Period temperature measurements

// data = flow , de l ta_t , s e s s i on number . . .

// . . . , temperature , ba lance point , e t c .

wr i t e data to f l a s h

END do while

Stop f low measurements

END MAIN

The shown algorithm is to familiarize the reader with only a rough idea of the implementation of the

proposed system. After system start, it sample the temperature sensor of the onboard TelosB; it then

proceeds to balance and compensate the system, getting the system ready to sample the �ow sensor. It

then starts a do while loop for 20 minutes (say). Within this loop the system checks for the interrupt

generated by the light sensor and marks that time. Upon receiving the next interrupt from the same

40

sensor, it calculates delta_t. On reception of the �rst interrupt it starts a continuous �ow measurement

cycle, unhindered by the 20 minute loop. Upon the reception of each light sensor interrupt, the delta_t

is measure and all the data is saved to the �ash memory. After 20 minutes, the do while loop ends, and

subsequently the �ow measurements are also stopped. That concludes one experiment.

This system can run inde�nitely as long as the battery holds. It can be programmed to stop automatically

when the Main Battery Unit's voltage drops below a predetermined limit. Therefore, all that requires

is to download the data and analyze them. Since the speed remains absolutely constant, and the fact

that there are no start/end to distinguish, the train speed and the �ow measurements are in perfect

correlation. This helps to avoid the human errors stated in the beginning of this section.

41

5 RESULTS and ANALYSIS

The results obtained by testing can be categorized as below:

1. The raw measurement data from the TelosB

These data �les are stored in �les of type fm_<date>_test<number>.txt. Most important data in

these �les are the �ow values, radio packet sequence number, temperature, and dR values.

2. The averaged �ow values and air �ow speeds

These data �les are stored in �les of type st_<date>_test<number>_<temp region>.txt and speed

timing <date> test<number>.xls.

The above data is used to plot Flow Values vs. Received Packet Number (from 1) and Average Flow

Value vs. Average Air Flow Speed (from 2). The latter plot assumes the Least Squares method to �nd

the plot equation (relation f i). Therefore, an error calculation is also produced. Analysis of the results

are included along with the results' plots.

5.1 Flow Value Plots for Di�erent Temperature Regions

Ten experiments were conducted in total. Ninth experiment had to be abandoned; therefore, it is not

accounted below.

Experiment
Number

Date
Temperature
at start (oC)

Temperature
variation
(oC)

No. of test
runs

Accepted
test runs

1 05/07/10 26.4 < 0.5 21 21
2 06/07/10 25.1 < 0.5 30 30
3 10/07/10 28.2 < 0.5 30 27
4 10/07/10 32.0 < 0.5 34 32
5 10/07/10 32.1 < 0.5 35 33
6 14/07/10 31.5 < 0.5 39 37
7 15/07/10 22.9 < 0.5 85 80
8 21/07/10 29.0 < 0.5 45 39
10 05/08/10 18.5 < 0.5 80 74

Table 7: The conducted experiments

The above experiments are plotted below. Each peak represents a test a run. The 'X's shown on top of

some peaks are the rejected test runs, and the other numbers represent the numbers of successful test

runs for the particular test. Following 4 graphs represent the 4 temperature regions under consideration.

42

Figure 27: Flow Value vs. Received Packet Number for Temp Zone a (Top: test4; Middle: test5; Bottom:
test6)

The above plot is for temperature zone a: 30 ≤ Temperature < 33. The number of total test runs for

this region amounts to 102.

43

Figure 28: Flow Value vs. Received Packet Number for Temp Zone b (Top: test1; Middle: test8; Bottom:
test2)

The above plot is for temperature zone b: 25 ≤ Temperature < 30. The number of total test runs for

this region amounts to 115.

Figure 29: Flow Value vs. Received Packet Number for Temp Zone c (test7)

The above plot is for temperature zone c: 21 ≤ Temperature < 25. The number of total test runs for

44

this region amounts to 80. This test yielded questionable results and did not �t in to the pattern of the

rest of the three temperature zones. This is illustrated graphically in the next section.

Figure 30: Flow Value vs. Received Packet Number for Temp Zone d (test10)

The above plot is for temperature zone d: 16 ≤ Temperature < 21. The number of total test runs for

this region amounts to 74.

When the individual test run graphs are zoomed in (for example, Figure 4.3), many oscillations are

visible. The reason for such behavior�mainly�has two reasons: non-maintenance of constant speed of

the car and turbulence inside the channel. The latter is unavoidable unless a sophisticated channel is

designed, but the maintenance of constant speed is very much possible with the proposed testbed in the

earlier chapter.

5.2 Air Flow Speed vs. Flow Sensor Measurements Relation

The average air speed is calculated for each test run and mapped with its corresponding average �ow

value as described in Chapter 4.3. These values, plotted separately for each temperature zone, yields the

following graph. The data points are shown with symbols * (in colors Magenta and Blue) and ∇. The
curves show a non-linear trend. Therefore, a second order polynomial was selected for curve �tting, i.e.

relation analysis (Equation 11).

45

Figure 31: Average Air Speed (m/s) vs. Average Flow Value (ADC value)

Let the polynomial coe�cients of temperature zones a, b, d be [a], [b], and [d], respectively. The polyno-

mial coe�cients are given below.

a0 839.1028

a1 142.9233

a2 -7.4201

b0 822.1430

b1 161.5691

b2 -4.3923

d0 759.6766

d1 235.0738

d2 -10.0030

Therefore, the relation of air speed and �ow measurements can be written as follows for di�erent tem-

perature zones.

fa : fa (ν) = −7.4201ν2 + 142.9233ν + 839.1028 (14)

f b : f b (ν) = −4.3923ν2 + 161.5691ν + 822.1430

fd : fd (ν) = −10.0030ν2 + 235.0738ν + 759.6766

where f (ν) represents the �ow value and ν the air speed. When considering the o�set values a0, b0, and

d0, the curves seem to intersect between 0 ≤ ν < 1. It is false and such an implication can be due to

non-precise coe�cients, so it can be deduced that the curvature of the plots are greater than it should

be. This is mainly due to the facts such as unavailability of �ow samples for the region 0 ≤ ν < 1 and

inadequate number of samples for the rest of the region. Of course, turbulence in the channel plays a

major role is adding to the errors of calibration. Such errors and human errors are di�cult to quantify.

However, the accumulated error�due to all unpredictable errors�is quanti�ed and analyzed in the next

section.

The relation in the temperature zone c also behaves like a second order polynomial. However, due to

timing errors, it resulted in a non-compatible plot. It is shown below. Therefore, temperature zone c is

not included in the above plot. It is compared with the temperature zones a, b, and d below.

46

Figure 32: Temp Zone c plot (mis�t)

5.2.1 Error Quanti�cation

Error of curve �tting is calculated in the following manner:

ej = f j (ν)− F j (15)

where j is the temperature zone, F experiment �ow measurements, and f the �ow values of the predicted

curve. Plotting these three error vectors yields the following.

47

Figure 33: Curve Fitting Error

It is quite evident the oscillatory behavior of the error about zero-error. Only few high oscillations are

found in all error plots. Therefore, given the drawbacks of the test method described earlier, the calculated

air speed vs. �ow relations equations prove to be adequate. A standard deviation can be calculated for

these error vectors to assess the individual errors as a whole and to compare with all temperature zones.

StandardDeviation =

√
sum (mean (ej)− ej)

size (νj)

2

where j is the temperature zone, e the error vector, and ν the average air speed vector for the given

temperature zone. This produces standard deviations of 15.98, 21.52, and 13.38 for temperature zones a,

b, and d, respectively. In comparison to each other, standard deviation's changes are on high side. This

presents a bit of inconsistency between di�erent temperature zones. However, it has to be noted that the

temperature zone essentially means a collection of temperatures. Therefore, the heater temperature�

though remaining within the zone�can vary up and down during the length of the experiment. Since

�ow measurements correlating to di�erent air speeds are produced randomly, there is no direct way to

indicate where such temperature variations may have occurred. But, it is collectively re�ected in the

standard deviation calculated above. Therefore, such temperature deviations within the zones can be the

reason for showing unequal standard deviations.

However, the error is still too high for the �ow sensor to be used for any precise work.

48

5.2.2 Inverted Flow Equation

The inverted �ow equation calculates the speed of air �ow based on the Equation 11 and the measured

ADC reading of the �ow (F). The Equation 11 can be rewritten for all temperature zones as a whole

(Note: coe�cients are changed to maintain generality):

f : F = pν2 + qν + r

pν2 + qν + (r − F) = 0

pν2 + qν + r̃ = 0

where r̃ = a0 − F . Since the equation is now reduced to a quadratic equation, the solutions are:

f−1 : ν1,2 =
−q ±

√
q2 − 4pr̃

2p
(16)

The above equation is applied for temperature zones a, b, and d, for the measured F values of the 3

temperature regions13. This above equation produces the estimated average speed of air. This value is

compared with the actual average air speed values to produce the error, EstimatedError = νestimate −
νactual. The standard deviation is calculated for this error estimation for all 3 temperature zones.

Temperature

zone

Standard

Deviation (m/s)

a 0.1559

b 0.1446

d 0.0914

Therefore, the �nal average air speed is as follows for di�erent temperature zones:

νa = νa,estimate ± 0.1559 ms−1

νb = νb,estimate ± 0.1446 ms−1

νd = νd,estimate ± 0.0914 ms−1

5.3 Additional Test for Temperature Zone e

The earlier �ow measurements were taken at a constant temperature for all temperature zones (at 50oC);

therefore, ΔT varied for di�erent temperature zones. Although this is a nonconventional approach, it

yielded promising results. However, with this method, the calibration results still retains temperature

dependence. This unnecessarily complicates the air�ow speed calculation, as it requires di�erent equations

for di�erent temperature regions.

13The Matlab code and error results can be found in the CD.

49

Another test was carried out with the same testbed for the temperature zone e, 11oC 5 Te < 16oC. This

test was done in the conventional sense of the constant temperature method: ΔT remains constant (25K)

for all temperature zones under which the test is performed. With ΔT = 25K, experimental results of

temperature zone e is expected in and around temperature zone b, for tests in temp zone b was conducted

inbetween 25oC 5 Tb < 30oC. This essentially means that ΔT ≈ 25K.

Temp zone e data:

Date 18.09.2010

Start Temperature 13.9oC

End Temperature 13.3oC

Test runs 98

Rejected test runs 9

The calculated relation between average �ow and average speed for temp zone e is as follows (as per

Chapter 5.2):

fe : fe (ν) = −15.1579ν2 + 212.4405ν + 778.0219

And, as per inverted equation principle in Chapter 5.2.2, the average air speed for temp zone e can be

calculated as follows:

νe = νe,estimate ± 0.2032 ms−1

The following graph shows the average air speed vs. average air �ow relation, both the actual experimental

values from test runs and the �tted curve (fe).

Figure 34: Average Air Speed vs. Average Flow for Temp Zone e

The �tted curve for temp zone e does not overlap the curve �tted for temp zone b. But, it is a near-�t,

and the curvature of the �tted curve shows promise of overlapping with the curve for temp zone b.

50

The curvature of the e curve between air speeds 1.5 - 3.0 ms−1 is accentuated. Evidently, there are lot of

measurements for that period, whereas �ow measurements for air speeds less than 1.5 ms−1 and greater

than 3 ms−1are quite low. If more measurements are taken for the latter two regions of the graph, the

curve will shape up from the second region side (speeds greater than 3 ms−1 � larger region than the

region of speeds less than 1.5 ms−1). Therefore, it is clear that the curves of e and b closely overlap.

However, it will not be an exact match due to errors explained in previous sections; another major factor

is that the temp zone b test consisted of 4 di�erent tests conducted on 4 di�erent days. There actual

starting temperatures were 25.01, 26.57, 28.29, and 29.03oC; for temp zone e it was only a single test

that was performed at 13.9oC. Therefore, it is not possible to see a near-exact match of curves e and b,

anyway, because ΔT varies from approximately 25K to 20K for curve b.

The test was conducted in twilight in deteriorating light conditions. Therefore, the human errors�

speci�cally the timing of the car�were error prone. Therefore, it is possible to see rather large oscillations

of the measurement points about the �tted curve for temp zone e. This is also proven by the standard

deviation value calculated for the inverted equation above, a value of 0.2032, the largest deviation of all

5 temperature zones.

However, evidently, curves for e and b have high resemblence. This is the expected result for other

temperature regions, too, had they been conducted with the conventional constant temperature method.

Therefore, the �ow sensor needs to be calibrated with the proposed advance testbed under the conven-

tional constant temperature method. It is expected to exclude the dependency of temperature from the

avg �ow vs. avg speed relation and yield a single equation to be used under varying ambient temperatures.

5.4 Energy Consumption

The energy consumption of the circuit of the testbed was evaluated for the test application. Energy

consumption during the measurement window for the whole circuit, radio, MAX4462 ampli�er, and

MAX1683 voltage doubler were measured.

The healter voltage is shown below (left). Notice the constant nature of the graph during its last 10 -

20 ms. This is where the �ow measurements are taken. However, as per the drawbacks explained earlier

in the digital method of balancing the bridge, noticeable ripples are visible in the constant part of the

graph (right).

Figure 35: Heater Voltage (right: same graph showin ripple e�ect)

The voltage across the components was measured using a 1 Ω resistor. The MAX4462 needed to be

measured using two probes (Note: one probe was a 10x probe while the other was 1x) to get the voltage

di�erece across the resistor by calculating the di�erence of voltage in two probes. The used oscilloscope

51

is capable of calculating the integral in mV s. However, since the voltage di�erence is divided by 1 Ω, it

can be interpreted as mAs14. The values of mean current consumption is also give below for di�erent

components. However, note that the current consumption is averaged out for the measurement window

shown in the graphs.

Figure 36: Left: Total current; Right: Radio current

In each cylce of the test application, a single �ow measurement is taken and then transmitted via the

radio. The energy consumption of the radio is approx. 0.25 mV s (current approx. 20 mA). The total

energy consumption for the circuit during �ow measurement was approx. 3.1 mV s (averaged current

approx. 82 mA).

Figure 37: Left: MAX1683; Right: MAX4462

The MAX1683 voltage doubler's energy consumption was approx 1.9 mAs (average current approx. 51

mA), whereas the MAX4462 ampli�er showed an energy consumption of around 0.65 mAs (average

current approx. 17 mA).

14Disregard visible mean values of the graphs as it takes in to account the entire visible area on the oscilloscope.

52

6 CONCLUSION

The thermal �ow sensor of IMSAS is an ideal sensor for implementation in the Intelligent Container

project. Some calibration has already been conducted for liquids; for air, the calibration results are

con�ned to the laboratory, near room temperature. At present, however, it is without a calibration

technique for its operating temperature spectrum. Developing of the circuits and programs for a manual

calibration technique was started last year. The target of this project was to expand the scope of the last

project to obtain a calibration method applicable to a wider temperature region�and to run the system

autonomously on a wireless sensor mote.

The center point of the research was to automate the system. Automation depended mainly on the

programming of the wireless mote on TinyOS operating system, using NesC programming language. This

wireless communication speci�c programming required one-third of the work of the project. Another area,

which required speci�c concentration, was the design and manufacture of a channel. A channel for the air

to pass through had to be redesigned to maintain laminar �ow. Several changes were made to the circuit

to automate the manual balance technique used in the previous design. The bulk of the work was spent

on testing of the autonomous calibration method using a novel concept, a toy car with speed control to

simulate air speeds. Finally, a real-time application was developed to display the �ow measurements.

And, another set of o�ine applications were developed to analyze the test results.

Research course had to be adapted mid way to accommodate the compensation of new �ndings. However,

at large, it remained unchanged. The problems encountered were numerous: timing issues with the digital

potentiometer, autonomous balance technique, testbed and test methodology formation, and testing

under di�erent ambient temperatures. However, research managed to avert the presented complications.

The calibration method detailed in this report contained some undesired errors, which are detailed in the

results chapter. However, given the drawbacks of the testing methodology, they are within acceptable

limits.

The used method can be used as a prototype in the Intelligent Container project. Beforehand, it is

advisable to conduct more tests on the temperature regions that have already been covered and on

regions that are not covered. This helps to improve the preciseness of the calibration curves.

The drawbacks of using a toy car were evident during testing. Therefore, a new test methodology is

suggested in the Test Methodology section. The given system can be e�ectively used to gather a large

amount of data�as oppose to the time consuming nature of the method used here�within a short period

of time. This is a huge advantage as it reduces the time spent on test cycles. Some other changes are

also proposed. Currently, the system runs on a 4 V battery. However, the motes used in the Intelligent

Container project runs on 2 AA batteries (3 V). Circuit has to undergo few modi�cations to comply

with this voltage. Further, more work is needed to develop an algorithm to network the spatial �ow

measurements taken in a container. One important parameter to be considered in this algorithm is the

direction of �ow in a three dimensional space. A strategic method to use as less �ow sensors as possible

to measure the three dimensional direction of an air �ow in a container is the most desired.

The research presented here can be reused in future tasks and are so developed with well documented

programs. The scope of the calibration in this project was limited to air �ows at low speed. Given

the proposed work is applied and the system redeveloped, it can be used to calibrate the sensor at high

speeds, too. This essentially means that the sensor can be applied to other commercial tasks than just

the research of the Intelligent Container project.

53

BIBLIOGRAPHY

[1] C. Lloyd. Integrating Thermal Flow Sensor to Telosb Module (mini project), University of Bremen,

2009.

[2] Microsystems Center Bremen. Intelligent Container. http://www.intelligentcontainer.com, 2010.

[3] A. Wessels. 0SGi Software-Bundles zur mobilen Überwachung von Waren mit Sensoren und RFID.

Master's thesis, Bremen, 2009.

[4] R. Buchner, K. Rohlo�, W. Benecke, and W. Lang. A high-temperature thermopile fabrication

process for thermal �ow sensors. volume 1, pages 575�578, June 2005. doi: 10.1109/SENSOR.2005.

1496482.

[5] R. Buchner, M. Maiwald, C. Sosna, T. Schary, W. Benecke, and W. Lang. Miniaturised thermal

�ow sensors for rough environments. pages 582�585, 2006. doi: 10.1109/MEMSYS.2006.1627866.

[6] R. Buchner, C. Sosna, W. Benecke, and W. Lang. New integration technologies and applications for

miniaturised thermoelectric �ow sensors. volume 13, 22 - 24 May 2007.

[7] Analog Devices Inc. The ADG734BRUZ Datasheet. http://www.analog.com/static/imported-

�les/data_sheets/ADG733_734.pdf, 2010.

[8] Maxim Integrated Products Inc. The MAX5483 Datasheet. http://datasheets.maxim-

ic.com/en/ds/MAX5481-MAX5484.pdf, 2010.

[9] Analog Devices Inc. The op90 datasheet. http://www.analog.com/static/imported-

�les/datasheets/OP90.pdf, 2009.

[10] The Mathworks. The Matlab Technical Document Help.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/poly�t.html, 2010.

54

Appendix I

Mini project

The following �gure shows the circuit used in the mini-project work conducted previously.

Figure 38: Mini-project circuit diagram

NesC

�nesC (network embedded systems C) is a component-based, event-driven programming language used

to build applications for the TinyOS platform. TinyOS is an operating environment designed to run on

embedded devices used in distributed Wireless Sensor Networks. nesC is built as an extension to the C

55

programming language with components "wired" together to run applications on TinyOS.�15

TinyOS

The following are extracts from Wikipedia

TinyOS is a free and open source component-based operating system and platform targeting wireless

sensor networks (WSNs). TinyOS is an embedded operating system written in the nesC programming

language as a set of cooperating tasks and processes. It is intended to be incorporated into smartdust.

TinyOS started as a collaboration between the University of California, Berkeley in co-operation with

Intel Research and Crossbow Technology, and has since grown to be an international consortium, the

TinyOS Alliance.

TinyOS applications are written in NesC, a dialect of the C programming language optimized for the

memory limitations of sensor networks. Its supplementary tools are mainly in the form of Java and shell

script front-ends. Associated libraries and tools, such as the NesC compiler and Atmel AVR binutils

toolchains, are mostly written in C.

TinyOS programs are built out of software components, some of which present hardware abstractions.

Components are connected to each other using interfaces. TinyOS provides interfaces and components

for common abstractions such as packet communication, routing, sensing, actuation and storage16.

15Extract from http://en.wikipedia.org/wiki/NesC
16Extract from http://en.wikipedia.org/wiki/Tinyos

56

Appendix II

TelosB Program - NesC Files

The programming code (written in NesC) for the TelosB mote to read air �ow values. The large number

of �les is essentially due to the inherent layered architecture of TinyOS and the inclusion of several

abstractions over a driver. It is possible to reduce the number of �les to achieve the same functionality.

However, that substantially brings down the clarity and understandability.

57

File name Description

ADG1_Pin_C.nc Con�gures and wires pin 1 of U28 as a digital pin.

ADG1_Pin_P.nc Con�gures pin 1 of U28 as an output pin.

ADG2_Pin_C.nc Con�gures and wires pin 2 of U28 as a digital pin.

ADG2_Pin_P.nc Con�gures pin 2 of U28 as an output pin.

BatteryAdc_C.nc Wires BatteryAdc_P.nc to system ADC read client.

BatteryAdc_P.nc Con�gures supply voltage half channel as an ADC channel to
read battery voltage.

ControllerAppC.nc Wires all user de�ned interfaces and modules to the system
components.

ControllerC.nc Program is booted in here. Governs the main timers for
measurements and commands the program �ow.

Digipot_CS_Pin_C.nc Con�gures and wires pin 3 of U2 as a digital pin. This is the
digital high/low required by digital potentiometer to latch the
written data to its memory.

Digipot_CS_Pin_P.nc Con�gures pin 3 of U2 as an output pin.

DigitalPotentiomater.nc Interface command to write to the digital potentiometer.

DigitalPotentiomaterC.nc Provides the write command of DigitalPotentiomater.nc
interface.

FlowAdc_C.nc Wires FlowAdc_P.nc to system ADC read client.

FlowAdc_P.nc Con�gures pin 5 of U2 as an analog input pin.

FlowControl.nc Interface command and events of �ow sensor related functions.

FlowPin_C.nc Con�gures and wires pin 7 of U2 as a digital pin. This is the
Read Signal for �ow measurement.

FlowPin_P.nc Con�gures pin 7 of U2 as an output pin.

FlowSensorControl.nc Provides all commands and events of interface FlowControl.nc
and SensorControl.nc

Make�le Provides the make command and pre-processor �ags for
compilation.

OP90_Adc_C.nc Wires OP90_Adc_P.nc to system ADC read client. This is the
pic to read the output of the voltage divider connected to OP90
output pin 6.

OP90_Adc_P.nc Con�gures pin 10 of U2 as an analog input pin.

SensorControl.nc Interface command and events of TelosB mote and radio related
functionality.

ShtHumC.nc Connects onboard Sensirion Sht11 temperature sensor.

ShtTempC.nc Connects onboard Sensirion Sht11 humidity sensor.

SensingData.h Contains all system related constants and radio packet structure.

Table 8: NesC programming �les - General Application

The following mesh depicts the relations and wiring of �les in Table 6.

58

Channel 2D

Figure 41: Channel 2D

75

	INTRODUCTION
	Intelligent Container Project
	Flow Sensor
	Previous Work
	Requirement and Task
	Chapter Breakdown and Reference Guide

	DESIGN HYPOTHESIS
	The Main Target
	Overall Design Hypothesis
	Hardware Design Hypothesis
	Software Design Hypothesis
	Testing Hypothesis

	PROJECT DESIGN
	Working Principle
	Hardware Design Implementation
	Air Channel
	Digital Components Overview
	Wheatstone Bridge
	Printed Circuit Board (PCB)

	Automated Balance and Compensation Technique
	Software Design Implementation
	TelosB Application

	TESTING
	Testbed
	Test Methodology
	Test Results Extraction and Manipulation
	Proposal for an Advanced Testbed

	RESULTS and ANALYSIS
	Flow Value Plots for Different Temperature Regions
	Air Flow Speed vs. Flow Sensor Measurements Relation
	Error Quantification
	Inverted Flow Equation

	Additional Test for Temperature Zone e
	Energy Consumption

	CONCLUSION
	BIBLIOGRAPHY
	Appendix I
	Appendix II
	Appendix III

