
Proceedings embedded world Conference 2006  1

 

Reiner Jedermann and Walter Lang: 

Mobile Java Code for Embedded Transport Monitoring Systems  
In: Caspar Grote and Renate Ester (Edt.) Proceedings embedded world Conference 2006, 
February 14-16, Nürnberg, Germany, Franzis Verlag, Poing, Germany, Vol2. pp. 771- 777  
(ISBN 3-7723-0143-6) 

 
IMSAS Institute for Microsensors, -Actuators and -Systems, University of Bremen 

 
Abstract: Mobile software agents are the method of choice if embedded system should dynamically 
adapt to variable tasks. The supervision of fruit transports is an outstanding example for such a 
system. An intelligent freight container has to adapt to the requirements of different transport goods. 
Which sensor range has to be supervised, how should deviations be assessed and at which warning 
levels should an appropriate reaction be triggered? These transport instruction travel together with the 
real object in form of a mobile freight agent along the supply chain from system to system. Modern 
runtime environments like Jamaica allow running JAVA on embedded systems without stalls by 
garbage collection. With some changes it is even feasible to run the Java Agent Development 
Framework JADE on ARM processors. Further technologies from the fields of RFIDs and wireless 
sensor networks are integrated into our autonomous monitoring system.  

 

1   Autonomous transport monitoring systems 
The increased processing power of embedded systems enables new solutions in supply 
chain management and logistics. Quality supervision along the supply chain can be fully 
automated by utilising a system that does much more than merely checking threshold values. 
By using the feature of JAVA to execute mobile code, these autonomous transport-
monitoring systems can dynamically adapt to the special needs of each kind of good. As part 
of a collaborative research centre1 on autonomous processes in logistics, we are developing 
such an intelligent sensor system that could be integrated into standard containers or 
reefers.  

Goal of our system 
The system improves the transport facilities for perishable goods. The owner writes a specific 
transport instruction into an electronic consignment note, which contains information about 
the impact of different environmental factors on the quality of the goods.  
The dynamic quality model and the actual quality state are part of this electronic waybill. It 
can also contain a small program that is activated when a potential risk for the freight is 
detected. It might, for example, change the route planning or order a replacement delivery. 
For defining the transport instruction, the owner is supported by a framework API that defines 
a common base class for user-defined functionality. Additionally, the owner may change 
general or user-specific parameters.  

Selecting a programming language 
The electronic waybill accompanies the freight along the transport route. At each 
transhipment, the host system could change from a PC based server to an embedded 
system or vice versa. Platform independence is a major point in selecting the programming 
language. It cannot be assumed that the owner of the goods has special knowledge on 
embedded systems. It must be easy for him to edit and complete the waybill on a PC. 
Furthermore, the transport system will continuously be extended by new kind of goods which 

                                                 
1 Autonomous Cooperating Logistic Processes – A Paradigm Shift and its Limitations, University of 

Bremen, see www.sfb637.uni-bremen.de 



Proceedings embedded world Conference 2006  2

implies an equally dynamic framework. It must be possible to dynamically load and unload 
code at runtime.  
JAVA meets all these requirements and has the additional benefits of being a very 
widespread and simple language. Nevertheless, it has rarely been used on embedded 
systems due to its high consumption of resources. But the increased power of up-to-date 
processors and special programming environments make it feasible to run complex JAVA 
code on embedded systems. 

Fruit Logistics as example 
Fruit logistics places high demands on the quality monitoring. Fruits and vegetables are even 
after harvest a living product, as part of the maturing process takes place during transport. 
The speed of these processes depends on various factors like temperature, humidity, and 
concentration of oxygen and carbon dioxide. Especially the gaseous ripening hormone 
ethylene has a considerable impact. Instead of recording the course of these environmental 
parameters in a data logger, the system informs the owner immediately of major changes. To 
know in advance about quality changes is crucial in fruit logistics so as to make corrections in 
the transport planning or warehouse keeping as early as possible. 

Local data interpretation 
The vast amount of sensor information cannot be handled by human resources alone. There 
is a high need for automated data interpretation. Communication systems for transport 
supervision are getting into the market2 but they are still lacking intelligent solutions for data 
reduction. 
Local data processing reduces the amount of data that has to be transferred over expensive 
mobile communication networks. The systems work autonomously, even if the external 
communication fails and guarantees a continuous supervision of the goods. In our work we 
present an adaptive interpretation system that can run on a standard PC as well as on a 
standard check-card-sized processor module.  

2   Intelligent objects versus supporting environment 
The idea of intelligent environments is now more than five years old. It was mainly applied in 
research on the adaptive house3, where every light switch and radiator vale is equipped with 
microprocessor and communication. The inventory of the house automatically adapts to the 
needs of the inhabitants.  
It seems to be natural to use a similar approach in logistics by making each object like pallets 
and boxes intelligent. But the hard cost pressure demands other solutions. On item level only 
standard RFID-Tags with a price of 10 or 20 cents are acceptable. With current technologies 
intelligent objects with processor, sensors, battery, and communication are far beyond this 
scope.  
For these economic reasons it is more appropriate to integrate the infrastructure into the 
means of transport. They stay in the ownership of the transport company. The willingness to 
invest is much higher at this level. In our solution the means of transport provides a platform 
on which the objects can “run” their intelligence and monitor quality influence factors by 
extensive sensor equipment. Therefore, we would rather name it a “supporting environment”. 
The “intelligence” is shifted into a software representation of the object separated form the 
physical instance. The system concept contains three different layers 
• the physical object, tagged with a standard RFID for identification, 
• the representation of the object in form of a mobile agent or JAVA application and  

                                                 
2 see Press note form IBM / Maersk in the RFID Journal (www.rfidjournal.com/articleprint/1884/-1/1) 
3 see Lesser 1998 for example 



Proceedings embedded world Conference 2006  3

• the supporting environment, consisting of the processor and sensor platform integrated 
into the means of transport. 

Other application fields 
Instead of the described transport scenario, this solution could be applied to a shop floor for 
example. The work pieces are marked by RFID tags. Only the machines need to be 
equipped with a processor platform. The assembling instructions as representation of the 
objects are transferred to the machine that handles the object. 

The need for mobile code 
On their way through the transport or production chain, the physical objects are accompanied 
by their software representations. When the object is loaded to a new means of transport the 
representation has to be transferred as well. To be adaptive to multiple and even yet 
unknown kinds of good and materials, the platform has to be able to execute dynamic code. 
The representation has to support mobility for the transferring process.  

3   JAVA as a “mobile” language 
Execution of dynamic code is an essential feature of JAVA. Copying the intermediate class 
files to the destination system is the simplest way to achieve mobility. If the name of the 
transferred class is only known at runtime, the class can be invoked by the standard 
java.lang.ClassLoader. The loadClass method takes the class name as a parameter. By 
overwriting the findClass method, the user can implement his own mechanism to load 
classes that are transmitted in a special format, for example over a socket-stream. But JAVA 
offers more powerful tools to support mobility. The java.net.URLClassLoader searches 
classes and archives in a given path, which could contain local directories or remote ftp-
servers. Each classLoader creates its own namespace. Using a separate classLoader for 
each transport instruction avoids conflicts through overlapping class names by different 
programmers. 
To store the state of an object JAVA provides special features for serialization. The 
ObjectOutputStream.writeObject method writes recursively the current data of all member 
and parent objects to a stream. Because this feature was originally meant to locally store and 
reload objects only the names of the required classes are written along the object state. A 
hash code or fingerprint prevents that an object is reloaded with an incompatible version. In 
order to transfer a running program to another computer, it is necessary to add the class files 
to the serialized object. But there are some drawbacks. The serialized object can become 
very large because it contains the complete hierarchy of parent classes. Furthermore, the 
user has to make sure not to store data in the object that is only valid on the local system. To 
avoid redundancy it is better to only transfer the code and data of derived classes that are 
actually changed.  

4   The agent framework 
Agents as a software concept to run programs in a distributed network have been 
investigated for a couple of years. Agents are software units that perform autonomously a 
task on behalf of their owner. They communicate peer-to-peer to achieve their goals4. Some 
agents hop through the internet to search information on enabled remote platforms. In other 
applications they cooperate as virtual football players to win the Robocop. The ubiquitous 
computer viruses and worms might be regarded as software agents, too, although they don’t 
tend to clean up after their job is done. 
In the context of this work, agents can be understood as extended concept of mobile 
software that uses a standardized communication language. The most common environment 
to test and implement agents is the JavaAgentDEvelopment5 framework (JADE) that results 

                                                 
4 A detailed discussion of software agents can be found in Bingus 2001 and Wooldridge 1995. 
5 http://jade.tilab.com/index.html 



Proceedings embedded world Conference 2006  4

from a former EU research project6. We found that the functions of this framework are very 
useful to implement the autonomous transport monitoring system.  
The architecture or structure of an agent is separated in different units or behaviours, for 
example to handle incoming messages, to request the sensor system and to calculate the 
quality modelling. The thread handling is provided by the framework. The agents as a whole 
are using pre-emptive threads. Inside the agent cooperative multitasking is used to run 
independent units. Therefore, the units do not need to synchronize to access the data fields 
of the agent. If a unit causes a deadlock only his agent rather than the entire system is 
blocked. 

Agents communicate among themselves by asynchronous messages independently of their 
current location. Because raw data could be misinterpreted by external participants all 
messages are send in form of a subset of the standardized FIPA-ACL language7. After 
defining the vocabulary, objects are automatically translated by the framework into an XML-
like string representation. The framework requires JAVA J2SE as an additional library.  
JADE has a built-in mechanism for migration that seamlessly transfers a running agent as a 
serialized object to a remote server. Unfortunately, we could not use this mechanism directly 
in our logistic system. Because of the nested hierarchy of the agent base class the 
deserialization of the agent needs a huge amount of processor time. Furthermore, the 
migration is restricted to peripheral platforms that are permanently connected to their host. 
Therefore, the built-in migration cannot be used for autonomous units, which have to be fail-
safe against communication disruptions. 

5   Running JADE on embedded systems  
In the beginning of the 90th JAVA was originally written to run on portable microcomputers to 
control household appliances8. Since then it has become one of the major languages to 
implement business logic on central servers. But new programming environments brought 
JAVA back to the embedded world. The unpredictable interruptions of the virtual machine by 
the garbage collector have been an obstacle to run JAVA on systems with real-time 
requirements. The Jamaica virtual machine9 avoids stalls by using real-time garbage 
collection10. Pre-compiling the static part of the Java byte code to native machine code 
speeds up the execution of the program. Only dynamic parts of the code have to be run by 
the virtual machine.  
A special version of JADE, the Light Extensible Agent Platform (LEAP), was tested on mobile 
phones and palms by Moreno11 et. al. By means of a graphical interface, the user sends 
requests and monitors results that were retrieved by software agents.  Although JADE-LEAP 
is well tested on PCs, an implementation for “industrial” embedded platforms has not been 
made available yet.  
As an example for the future “intelligent” container we selected a Strong-ARM processor 
module12 with 16 MByte Flash and 32 MByte SDRAM. The embedded Linux operating 
system requires less than the half of the memory resources. The processor operates at a 
clock rate of 200 MHz.  
                                                 
6 In 2003 a board has been founded to promote the further evolution of Jade by TILAB and Motorola, 

as a follow-up of the European project IST-1999-10211. 
 

7 The Agent Communication Language (ACL) was defined be the Foundation for Intelligent Physical 
Agents (FIPA). 

8 The Green Project started 1990 at Sun Microsystems to develop the Star Seven microcomputer. 
9 The JamaicaVM is a product of aicas GmbH, Karlsruhe, Germany, http://www.aicas.com  
10 see Siebert 2002 
11 see Moreno 2003 
12 The DNP1110 from SSV EMBEDDED SYSTEMS, Hannover, Germay, http://www.dilnetpc.com/ 
 



Proceedings embedded world Conference 2006  5

The adjustment of JADE-LEAP for ARM processors turned out to be an extensive task. The 
source code is composed of more than 800 files. The embedded JAVA environment provides 
almost all functions of J2SE except for graphics. But some missing or problematic functions 
had to be detected and worked around in JADE.  
Furthermore, the execution time of the framework was not satisfactory. Object oriented 
programming allows calling classes over an interface, which makes the program very 
flexible. The implementations of the interface can be exchanged and either statically or 
dynamically linked to the system. For example, a new UMTS communication class can 
replace a standard TCP-IP class without changing the method calls in the rest of the code. 
The JADE developers made extensive use of this approach. But the use of interfaces 
reduces the scope for the compiler to optimize the code. Beside the size of the code, this is 
the main reason why the execution of JADE is slow compared to straightforward-
programmed applications.  
The translation from JAVA objects like the working copy of the consignment note into a 
platform independent language was identified as the major bottleneck. The built-in 
mechanism of JADE adds member elements which are listed in a vocabulary or ontology 
definition file to the message text. To retrieve the elements the ontology is compared against 
a table of the objects getter methods. This table is generated by reflection, i.e. by a call to 
java.lang.Class.getMethods() that turned out to be very expensive. The performed 
optimization prevents redundant calls to getMethods() by caching the table after the first call. 
The speed of the translation process was thereby accelerated by a factor of three.  
Furthermore the translation is done in two steps to keep the option to implement other 
languages than FIPA-ACL. The object is first transformed into a nested intermediate list. In 
the second step the list is either translated into a byte or string orientated language. By a 
direct translation and some other reductions of the framework’s flexibility further optimization 
is possible.   

6   Application in transport monitoring 
To show how the described concept could be applied in transport logistics we installed the 
processor module into a model container. The module was equipped with the necessary 
peripherals for a transport monitoring system. Sensor nodes can be either connected directly 
by SPI13 or wireless based on the new 802.15.4 low-power communication protocol. A unit 
for external communication that was constructed by a partner institute14 automatically 
switches between different available mobile networks. The sensor concept was presented in 
detail on the Eurosensors 200515.  
The detection of freight loading and unloading is done by an RFID-Reader. We had to 
dismiss our first idea to store the mobile agent on a tag attached to the freight item. The 
available memory of 100 Bytes16 is far too small to hold the code of a typical monitoring 
agent with a code size of about 20 kBytes. Additionally, the time span to access the tag by a 
door reader is limited to few seconds given by the time a fork-lift needs to pass a gate. 
Therefore, only small data packages can be stored on the tag. In our current approach we 
store only an IP-address and the current quality state on the tag for quick access with a 
hand-held reader. From the IP-address the container knows where to request the mobile 
agent.  

                                                 
13  A standard 4-wire serial bus (Serial Peripheral Interface) 
14  ComNets, University of Bremen 
15  See Jedermann, 2005 
16  Value for ISO 15693 tags with a transmission rate of about 1 kBit per second at a carrier frequency 

of 13.56 MHz. UHF technology will bring some improvements but no general change.  
 



Proceedings embedded world Conference 2006  6

Transmission of mobile agents along the transport chain 
The producer or manufacturer of the good defines how sensitive the monitoring agent reacts 
to changes in the monitored values. The electronic consignment note contains a JAVA 
archive with the derived classes for freight specific instructions. The agent accompanies the 
freight item along the transport chain. In the first step the agent is started on a server in the 
warehouse. He supervises the freight item as long as it is waiting for transport. 
When the freight is loaded to a means of transport the following steps take place: 
• The container permanently runs a management agent. He receives a notification from the 

RFID-reader that a new freight item has arrived and sends a “doTransfer” command to the 
IP that is stored in the tag. 

• The instance of the monitoring agent in the warehouse receives this command. The agent 
stores its current state in the electronic consignment note and sends it along with its own 
class files as “handOver” message to the means of transport.  

• The container’s management agent extracts the state and the class files from the 
consignment note and starts a new instance of the monitoring agent.  

• Finally the instance in the warehouse terminates.  
During the transport, the agent collects the sensor data and calculates the resulting stress for 
the good. If it detects a potential quality risk, it carries out the programmed action, for 
example sending a warning message to the owner or informing the driver to change the 
route. In our demonstrator, all warning messages are displayed by a graphical user interface.  
On unloading, the current IP-address and quality state are written back to the tag. The agent 
waits for a request from the next means of transport. 

7   Required resources and results 
By running test cases for real-world scenarios we verified whether the resources of the 
typical embedded systems are sufficient to run the software for an autonomous container 
monitoring system. Our StrongARM17 test system features 16 MByte flash and 32 MByte 
SDRAM at a clock rate of 200 MHz. The Linux operating system leaves 10 MByte flash and 
15 MByte SDRAM to the user.  
The JAVA environment links the virtual machine together with the native code containing the 
compiled classes into a single file for the target processor. For the application combined with 
the JADE framework the executable file has a size of 2.5 MBytes. The required minimum 
heap size of 12 MByte takes almost the whole free user memory.  
The code size of the agents is less crucial. The class files of a complete monitoring agent 
comprise about 20 kByte. But only individual derived classes have to be mobile. A simple 
quality model based on a time-temperature-integration for example needs about 3 kByte.  
Beside the dynamic classes, the electronic consignment note contains the freight state in 
form of a FIPA-ACL message with a size of about 1.2 kByte. A warning message that 
contains only state changes requires 600 Bytes. The transmission of the complete 
consignment note takes about 3 seconds. Warning messages need less than one second to 
be transmitted.  
The total time to transmit a mobile agent encloses communication, loading dynamic classes, 
agent start-up, and restoring its state. With 15 seconds it falls short of our expectations. But 
in transport planning, time is not a critical parameter; therefore delays in the order of tens of 
seconds should be acceptable. 
Compared to the migration time between two PCs of about 100 ms or 200 ms, the 
transmission time to the embedded system is slower than the ratio of clock rates indicates. 
The migration time will be reduced by switching to an XScale processor that offers double 

                                                 
17 Intel's StrongARM SA-1110 is an ARM7 derivate. 



Proceedings embedded world Conference 2006  7

the clock speed and an improved ARM9 architecture at the same power consumption of 1 
Watt. Our aim is to reduce migration time to a few seconds by further optimization of the 
framework.  
 
 

8   Summary 
JAVA is a convenient language from a programmer’s point of view, but it does not excel in 
modesty when it comes to hardware resources. It is simply a trade-off between increased 
hardware and reduced development costs. In our work we showed that it is feasible to use 
JAVA on embedded systems to run mobile code. We presented an implementation of the 
concept of “supporting environments”. Freight items are accompanied by a software 
representation in form of a mobile agent. The means of transport provide a platform for the 
agents by an embedded processor module. The JADE framework that simplifies the 
programming of individual transport instructions into software agents was adapted to ARM 
processors.  
Especially in transport logistics, this concept offers considerable advantages as compared to 
pure telemetric solutions. The system is less sensitive against communication failures. Local 
data processing guarantees permanent supervision of the freight. Furthermore, the costs of 
mobile communication are reduced.  
 
 

9   References 
Bigus,J.: Intelligente Agenten mit Java programmieren; Addison-Wesley; München; 2001 
Jedermann,R.; Behrens,C.; Westphal,D.; Lang,W.: Applying autonomous sensor systems in 
logistics; Combining Sensor Networks, RFIDs and Software Agents; EUROSENSORS XIX; 
11th-14th September 2005, Barcelona, Spain 
Lesser,A. et. al.: A Multi-Agent System for Intelligent Environment Control; UMass Computer 
Science Technical Report 1998-40 
Moreno, A.; Valls,A.; Viejo,A.: Using JADE-LEAP to implement agents in mobile devices; 
TILAB "EXP in search of innovation"; 2003; Italy; http://jade.tilab.com/papers-exp.htm  
Siebert,F.: Hard Realtime Garbage Collection, aicas GmbH, Karlsruhe 2002 
Wooldridge, M., and Jennings, N. R. (1995). Intelligent Agents: Theory and Practice. The 
Knowledge Engineering Review 10(2): 115-152. 
 

Acknowledgements 
This research was supported by the German Research Foundation (DFG) as part of the 
Collaborative Research Centre 637 "Autonomous Cooperating Logistic Processes". 

Contact Address 
Dipl.Ing. Reiner Jedermann;  rjedermann@imsas.uni-bremen.de;  Phone ++49/421/218-4908 
Prof. Dr. Walter Lang;  wlang@imsas.uni-bremen.de;  Phone ++49/421/218-4701 
 
University of Bremen, FB1, IMSAS (Institute for Microsensors, -Actuators and –Systems) 
Otto-Hahn-Allee, Building NW1 
D-28359 Bremen; GERMANY 
Fax 0421/218-4774 


